Metamath Proof Explorer


Theorem efgs1

Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgs1 AD⟨“A”⟩domS

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 eldifi AWxWranTxAW
8 7 5 eleq2s ADAW
9 8 s1cld AD⟨“A”⟩WordW
10 s1nz ⟨“A”⟩
11 eldifsn ⟨“A”⟩WordW⟨“A”⟩WordW⟨“A”⟩
12 9 10 11 sylanblrc AD⟨“A”⟩WordW
13 s1fv AD⟨“A”⟩0=A
14 id ADAD
15 13 14 eqeltrd AD⟨“A”⟩0D
16 s1len ⟨“A”⟩=1
17 16 a1i AD⟨“A”⟩=1
18 17 oveq2d AD1..^⟨“A”⟩=1..^1
19 fzo0 1..^1=
20 18 19 eqtrdi AD1..^⟨“A”⟩=
21 rzal 1..^⟨“A”⟩=i1..^⟨“A”⟩⟨“A”⟩iranT⟨“A”⟩i1
22 20 21 syl ADi1..^⟨“A”⟩⟨“A”⟩iranT⟨“A”⟩i1
23 1 2 3 4 5 6 efgsdm ⟨“A”⟩domS⟨“A”⟩WordW⟨“A”⟩0Di1..^⟨“A”⟩⟨“A”⟩iranT⟨“A”⟩i1
24 12 15 22 23 syl3anbrc AD⟨“A”⟩domS