| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | eldifi |  |-  ( A e. ( W \ U_ x e. W ran ( T ` x ) ) -> A e. W ) | 
						
							| 8 | 7 5 | eleq2s |  |-  ( A e. D -> A e. W ) | 
						
							| 9 | 8 | s1cld |  |-  ( A e. D -> <" A "> e. Word W ) | 
						
							| 10 |  | s1nz |  |-  <" A "> =/= (/) | 
						
							| 11 |  | eldifsn |  |-  ( <" A "> e. ( Word W \ { (/) } ) <-> ( <" A "> e. Word W /\ <" A "> =/= (/) ) ) | 
						
							| 12 | 9 10 11 | sylanblrc |  |-  ( A e. D -> <" A "> e. ( Word W \ { (/) } ) ) | 
						
							| 13 |  | s1fv |  |-  ( A e. D -> ( <" A "> ` 0 ) = A ) | 
						
							| 14 |  | id |  |-  ( A e. D -> A e. D ) | 
						
							| 15 | 13 14 | eqeltrd |  |-  ( A e. D -> ( <" A "> ` 0 ) e. D ) | 
						
							| 16 |  | s1len |  |-  ( # ` <" A "> ) = 1 | 
						
							| 17 | 16 | a1i |  |-  ( A e. D -> ( # ` <" A "> ) = 1 ) | 
						
							| 18 | 17 | oveq2d |  |-  ( A e. D -> ( 1 ..^ ( # ` <" A "> ) ) = ( 1 ..^ 1 ) ) | 
						
							| 19 |  | fzo0 |  |-  ( 1 ..^ 1 ) = (/) | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( A e. D -> ( 1 ..^ ( # ` <" A "> ) ) = (/) ) | 
						
							| 21 |  | rzal |  |-  ( ( 1 ..^ ( # ` <" A "> ) ) = (/) -> A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( A e. D -> A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) | 
						
							| 23 | 1 2 3 4 5 6 | efgsdm |  |-  ( <" A "> e. dom S <-> ( <" A "> e. ( Word W \ { (/) } ) /\ ( <" A "> ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) ) | 
						
							| 24 | 12 15 22 23 | syl3anbrc |  |-  ( A e. D -> <" A "> e. dom S ) |