| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐹  ∈  dom  𝑆  ↔  ( 𝐹  ∈  ( Word  𝑊  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑎  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑎 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎  −  1 ) ) ) ) ) | 
						
							| 8 | 7 | simp1bi | ⊢ ( 𝐹  ∈  dom  𝑆  →  𝐹  ∈  ( Word  𝑊  ∖  { ∅ } ) ) | 
						
							| 9 |  | eldifsn | ⊢ ( 𝐹  ∈  ( Word  𝑊  ∖  { ∅ } )  ↔  ( 𝐹  ∈  Word  𝑊  ∧  𝐹  ≠  ∅ ) ) | 
						
							| 10 |  | lennncl | ⊢ ( ( 𝐹  ∈  Word  𝑊  ∧  𝐹  ≠  ∅ )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 11 | 9 10 | sylbi | ⊢ ( 𝐹  ∈  ( Word  𝑊  ∖  { ∅ } )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 12 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 13 | 8 11 12 | 3syl | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 14 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ℕ0 ) | 
						
							| 15 | 8 11 14 | 3syl | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ℕ0 ) | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑎  =  0  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑎  =  0  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝑎  =  0  →  ( ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 )  ↔  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( 𝑎  =  0  →  ( ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) )  ↔  ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 0 ) ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑎  =  0  →  ( ( 𝐹  ∈  dom  𝑆  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) ) )  ↔  ( 𝐹  ∈  dom  𝑆  →  ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 0 ) ) ) ) ) | 
						
							| 21 |  | eleq1 | ⊢ ( 𝑎  =  𝑖  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑎  =  𝑖  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 23 | 22 | breq2d | ⊢ ( 𝑎  =  𝑖  →  ( ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 )  ↔  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 24 | 21 23 | imbi12d | ⊢ ( 𝑎  =  𝑖  →  ( ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) )  ↔  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑎  =  𝑖  →  ( ( 𝐹  ∈  dom  𝑆  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) ) )  ↔  ( 𝐹  ∈  dom  𝑆  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 26 |  | eleq1 | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 28 | 27 | breq2d | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 )  ↔  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 29 | 26 28 | imbi12d | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) )  ↔  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 30 | 29 | imbi2d | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( ( 𝐹  ∈  dom  𝑆  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) ) )  ↔  ( 𝐹  ∈  dom  𝑆  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 31 |  | eleq1 | ⊢ ( 𝑎  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑎  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) | 
						
							| 33 | 32 | breq2d | ⊢ ( 𝑎  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 )  ↔  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) | 
						
							| 34 | 31 33 | imbi12d | ⊢ ( 𝑎  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) )  ↔  ( ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) | 
						
							| 35 | 34 | imbi2d | ⊢ ( 𝑎  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( ( 𝐹  ∈  dom  𝑆  →  ( 𝑎  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑎 ) ) )  ↔  ( 𝐹  ∈  dom  𝑆  →  ( ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ) | 
						
							| 36 | 1 2 | efger | ⊢  ∼   Er  𝑊 | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →   ∼   Er  𝑊 ) | 
						
							| 38 |  | eldifi | ⊢ ( 𝐹  ∈  ( Word  𝑊  ∖  { ∅ } )  →  𝐹  ∈  Word  𝑊 ) | 
						
							| 39 |  | wrdf | ⊢ ( 𝐹  ∈  Word  𝑊  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑊 ) | 
						
							| 40 | 8 38 39 | 3syl | ⊢ ( 𝐹  ∈  dom  𝑆  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑊 ) | 
						
							| 41 | 40 | ffvelcdmda | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 0 )  ∈  𝑊 ) | 
						
							| 42 | 37 41 | erref | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 0 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 44 |  | elnn0uz | ⊢ ( 𝑖  ∈  ℕ0  ↔  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 45 |  | peano2fzor | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 0 )  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 46 | 44 45 | sylanb | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 47 | 46 | 3adant1 | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 48 | 47 | 3expia | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 49 | 48 | imim1d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) )  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 50 | 40 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑊 ) | 
						
							| 51 | 50 47 | ffvelcdmd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  𝑊 ) | 
						
							| 52 |  | fvoveq1 | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( 𝐹 ‘ ( 𝑎  −  1 ) )  =  ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) | 
						
							| 54 | 53 | rneqd | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎  −  1 ) ) )  =  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) | 
						
							| 55 | 27 54 | eleq12d | ⊢ ( 𝑎  =  ( 𝑖  +  1 )  →  ( ( 𝐹 ‘ 𝑎 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎  −  1 ) ) )  ↔  ( 𝐹 ‘ ( 𝑖  +  1 ) )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) | 
						
							| 56 | 7 | simp3bi | ⊢ ( 𝐹  ∈  dom  𝑆  →  ∀ 𝑎  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑎 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎  −  1 ) ) ) ) | 
						
							| 57 | 56 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ∀ 𝑎  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑎 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑎  −  1 ) ) ) ) | 
						
							| 58 |  | nn0p1nn | ⊢ ( 𝑖  ∈  ℕ0  →  ( 𝑖  +  1 )  ∈  ℕ ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑖  +  1 )  ∈  ℕ ) | 
						
							| 60 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 61 | 59 60 | eleqtrdi | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑖  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 62 |  | elfzolt2b | ⊢ ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑖  +  1 )  ∈  ( ( 𝑖  +  1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑖  +  1 )  ∈  ( ( 𝑖  +  1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 64 |  | elfzo3 | ⊢ ( ( 𝑖  +  1 )  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( ( 𝑖  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑖  +  1 )  ∈  ( ( 𝑖  +  1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 65 | 61 63 64 | sylanbrc | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑖  +  1 )  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 66 | 55 57 65 | rspcdva | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( 𝑖  +  1 ) )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) | 
						
							| 67 |  | nn0cn | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℂ ) | 
						
							| 68 | 67 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑖  ∈  ℂ ) | 
						
							| 69 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 70 |  | pncan | ⊢ ( ( 𝑖  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑖  +  1 )  −  1 )  =  𝑖 ) | 
						
							| 71 | 68 69 70 | sylancl | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  1 )  −  1 )  =  𝑖 ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 74 | 73 | rneqd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( ( 𝑖  +  1 )  −  1 ) ) )  =  ran  ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 75 | 66 74 | eleqtrd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( 𝑖  +  1 ) )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 76 | 1 2 3 4 | efgi2 | ⊢ ( ( ( 𝐹 ‘ 𝑖 )  ∈  𝑊  ∧  ( 𝐹 ‘ ( 𝑖  +  1 ) )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 77 | 51 75 76 | syl2anc | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 78 | 36 | a1i | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →   ∼   Er  𝑊 ) | 
						
							| 79 | 78 | ertr | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 )  ∧  ( 𝐹 ‘ 𝑖 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 80 | 77 79 | mpan2d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0  ∧  ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 81 | 80 | 3expia | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 82 | 81 | a2d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0 )  →  ( ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) )  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 83 | 49 82 | syld | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) )  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 84 | 83 | expcom | ⊢ ( 𝑖  ∈  ℕ0  →  ( 𝐹  ∈  dom  𝑆  →  ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) )  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 85 | 84 | a2d | ⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝐹  ∈  dom  𝑆  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ 𝑖 ) ) )  →  ( 𝐹  ∈  dom  𝑆  →  ( ( 𝑖  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 86 | 20 25 30 35 43 85 | nn0ind | ⊢ ( ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ℕ0  →  ( 𝐹  ∈  dom  𝑆  →  ( ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) | 
						
							| 87 | 15 86 | mpcom | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) | 
						
							| 88 | 13 87 | mpd | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( 𝐹 ‘ 0 )  ∼  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) | 
						
							| 89 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( 𝑆 ‘ 𝐹 )  =  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) | 
						
							| 90 | 88 89 | breqtrrd | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( 𝐹 ‘ 0 )  ∼  ( 𝑆 ‘ 𝐹 ) ) |