Metamath Proof Explorer


Theorem efgi2

Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
Assertion efgi2 ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 fveq2 ( 𝑎 = 𝐴 → ( 𝑇𝑎 ) = ( 𝑇𝐴 ) )
6 5 rneqd ( 𝑎 = 𝐴 → ran ( 𝑇𝑎 ) = ran ( 𝑇𝐴 ) )
7 eceq1 ( 𝑎 = 𝐴 → [ 𝑎 ] 𝑟 = [ 𝐴 ] 𝑟 )
8 6 7 sseq12d ( 𝑎 = 𝐴 → ( ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 ↔ ran ( 𝑇𝐴 ) ⊆ [ 𝐴 ] 𝑟 ) )
9 8 rspcv ( 𝐴𝑊 → ( ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 → ran ( 𝑇𝐴 ) ⊆ [ 𝐴 ] 𝑟 ) )
10 9 adantr ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → ( ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 → ran ( 𝑇𝐴 ) ⊆ [ 𝐴 ] 𝑟 ) )
11 ssel ( ran ( 𝑇𝐴 ) ⊆ [ 𝐴 ] 𝑟 → ( 𝐵 ∈ ran ( 𝑇𝐴 ) → 𝐵 ∈ [ 𝐴 ] 𝑟 ) )
12 11 com12 ( 𝐵 ∈ ran ( 𝑇𝐴 ) → ( ran ( 𝑇𝐴 ) ⊆ [ 𝐴 ] 𝑟𝐵 ∈ [ 𝐴 ] 𝑟 ) )
13 simpl ( ( 𝐵 ∈ [ 𝐴 ] 𝑟𝐴𝑊 ) → 𝐵 ∈ [ 𝐴 ] 𝑟 )
14 elecg ( ( 𝐵 ∈ [ 𝐴 ] 𝑟𝐴𝑊 ) → ( 𝐵 ∈ [ 𝐴 ] 𝑟𝐴 𝑟 𝐵 ) )
15 13 14 mpbid ( ( 𝐵 ∈ [ 𝐴 ] 𝑟𝐴𝑊 ) → 𝐴 𝑟 𝐵 )
16 df-br ( 𝐴 𝑟 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 )
17 15 16 sylib ( ( 𝐵 ∈ [ 𝐴 ] 𝑟𝐴𝑊 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 )
18 17 expcom ( 𝐴𝑊 → ( 𝐵 ∈ [ 𝐴 ] 𝑟 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
19 12 18 sylan9r ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → ( ran ( 𝑇𝐴 ) ⊆ [ 𝐴 ] 𝑟 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
20 10 19 syld ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → ( ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
21 20 adantld ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
22 21 alrimiv ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
23 opex 𝐴 , 𝐵 ⟩ ∈ V
24 23 elintab ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ↔ ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑟 ) )
25 22 24 sylibr ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } )
26 1 2 3 4 efgval2 = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎𝑊 ran ( 𝑇𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) }
27 25 26 eleqtrrdi ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ )
28 df-br ( 𝐴 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ )
29 27 28 sylibr ( ( 𝐴𝑊𝐵 ∈ ran ( 𝑇𝐴 ) ) → 𝐴 𝐵 )