Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝐴 ) ) |
6 |
5
|
rneqd |
⊢ ( 𝑎 = 𝐴 → ran ( 𝑇 ‘ 𝑎 ) = ran ( 𝑇 ‘ 𝐴 ) ) |
7 |
|
eceq1 |
⊢ ( 𝑎 = 𝐴 → [ 𝑎 ] 𝑟 = [ 𝐴 ] 𝑟 ) |
8 |
6 7
|
sseq12d |
⊢ ( 𝑎 = 𝐴 → ( ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ↔ ran ( 𝑇 ‘ 𝐴 ) ⊆ [ 𝐴 ] 𝑟 ) ) |
9 |
8
|
rspcv |
⊢ ( 𝐴 ∈ 𝑊 → ( ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 → ran ( 𝑇 ‘ 𝐴 ) ⊆ [ 𝐴 ] 𝑟 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 → ran ( 𝑇 ‘ 𝐴 ) ⊆ [ 𝐴 ] 𝑟 ) ) |
11 |
|
ssel |
⊢ ( ran ( 𝑇 ‘ 𝐴 ) ⊆ [ 𝐴 ] 𝑟 → ( 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) → 𝐵 ∈ [ 𝐴 ] 𝑟 ) ) |
12 |
11
|
com12 |
⊢ ( 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) → ( ran ( 𝑇 ‘ 𝐴 ) ⊆ [ 𝐴 ] 𝑟 → 𝐵 ∈ [ 𝐴 ] 𝑟 ) ) |
13 |
|
simpl |
⊢ ( ( 𝐵 ∈ [ 𝐴 ] 𝑟 ∧ 𝐴 ∈ 𝑊 ) → 𝐵 ∈ [ 𝐴 ] 𝑟 ) |
14 |
|
elecg |
⊢ ( ( 𝐵 ∈ [ 𝐴 ] 𝑟 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐵 ∈ [ 𝐴 ] 𝑟 ↔ 𝐴 𝑟 𝐵 ) ) |
15 |
13 14
|
mpbid |
⊢ ( ( 𝐵 ∈ [ 𝐴 ] 𝑟 ∧ 𝐴 ∈ 𝑊 ) → 𝐴 𝑟 𝐵 ) |
16 |
|
df-br |
⊢ ( 𝐴 𝑟 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) |
17 |
15 16
|
sylib |
⊢ ( ( 𝐵 ∈ [ 𝐴 ] 𝑟 ∧ 𝐴 ∈ 𝑊 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) |
18 |
17
|
expcom |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐵 ∈ [ 𝐴 ] 𝑟 → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
19 |
12 18
|
sylan9r |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → ( ran ( 𝑇 ‘ 𝐴 ) ⊆ [ 𝐴 ] 𝑟 → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
20 |
10 19
|
syld |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
21 |
20
|
adantld |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
22 |
21
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
23 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
24 |
23
|
elintab |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ↔ ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑟 ) ) |
25 |
22 24
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → 〈 𝐴 , 𝐵 〉 ∈ ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ) |
26 |
1 2 3 4
|
efgval2 |
⊢ ∼ = ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } |
27 |
25 26
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → 〈 𝐴 , 𝐵 〉 ∈ ∼ ) |
28 |
|
df-br |
⊢ ( 𝐴 ∼ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ∼ ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran ( 𝑇 ‘ 𝐴 ) ) → 𝐴 ∼ 𝐵 ) |