Metamath Proof Explorer


Theorem fzoend

Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzoend AA..^BB1A..^B

Proof

Step Hyp Ref Expression
1 id AA..^BAA..^B
2 elfzoel2 AA..^BB
3 fzoval BA..^B=AB1
4 2 3 syl AA..^BA..^B=AB1
5 1 4 eleqtrd AA..^BAAB1
6 elfzuz3 AAB1B1A
7 5 6 syl AA..^BB1A
8 eluzfz2 B1AB1AB1
9 7 8 syl AA..^BB1AB1
10 9 4 eleqtrrd AA..^BB1A..^B