| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | id |  |-  ( f = F -> f = F ) | 
						
							| 8 |  | fveq2 |  |-  ( f = F -> ( # ` f ) = ( # ` F ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( f = F -> ( ( # ` f ) - 1 ) = ( ( # ` F ) - 1 ) ) | 
						
							| 10 | 7 9 | fveq12d |  |-  ( f = F -> ( f ` ( ( # ` f ) - 1 ) ) = ( F ` ( ( # ` F ) - 1 ) ) ) | 
						
							| 11 |  | id |  |-  ( m = f -> m = f ) | 
						
							| 12 |  | fveq2 |  |-  ( m = f -> ( # ` m ) = ( # ` f ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( m = f -> ( ( # ` m ) - 1 ) = ( ( # ` f ) - 1 ) ) | 
						
							| 14 | 11 13 | fveq12d |  |-  ( m = f -> ( m ` ( ( # ` m ) - 1 ) ) = ( f ` ( ( # ` f ) - 1 ) ) ) | 
						
							| 15 | 14 | cbvmptv |  |-  ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) = ( f e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( f ` ( ( # ` f ) - 1 ) ) ) | 
						
							| 16 | 6 15 | eqtri |  |-  S = ( f e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( f ` ( ( # ` f ) - 1 ) ) ) | 
						
							| 17 |  | fvex |  |-  ( F ` ( ( # ` F ) - 1 ) ) e. _V | 
						
							| 18 | 10 16 17 | fvmpt |  |-  ( F e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) | 
						
							| 19 | 1 2 3 4 5 6 | efgsf |  |-  S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W | 
						
							| 20 | 19 | fdmi |  |-  dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } | 
						
							| 21 | 18 20 | eleq2s |  |-  ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |