Metamath Proof Explorer


Theorem efgsf

Description: Value of the auxiliary function S defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgsf S : t Word W | t 0 D k 1 ..^ t t k ran T t k 1 W

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 id m = t m = t
8 fveq2 m = t m = t
9 8 oveq1d m = t m 1 = t 1
10 7 9 fveq12d m = t m m 1 = t t 1
11 10 eleq1d m = t m m 1 W t t 1 W
12 11 ralrab2 m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1 W t Word W t 0 D k 1 ..^ t t k ran T t k 1 t t 1 W
13 eldifi t Word W t Word W
14 wrdf t Word W t : 0 ..^ t W
15 13 14 syl t Word W t : 0 ..^ t W
16 eldifsn t Word W t Word W t
17 lennncl t Word W t t
18 16 17 sylbi t Word W t
19 fzo0end t t 1 0 ..^ t
20 18 19 syl t Word W t 1 0 ..^ t
21 15 20 ffvelrnd t Word W t t 1 W
22 21 a1d t Word W t 0 D k 1 ..^ t t k ran T t k 1 t t 1 W
23 12 22 mprgbir m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1 W
24 6 fmpt m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1 W S : t Word W | t 0 D k 1 ..^ t t k ran T t k 1 W
25 23 24 mpbi S : t Word W | t 0 D k 1 ..^ t t k ran T t k 1 W