Metamath Proof Explorer


Theorem efgsf

Description: Value of the auxiliary function S defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgsf S:tWordW|t0Dk1..^ttkranTtk1W

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 id m=tm=t
8 fveq2 m=tm=t
9 8 oveq1d m=tm1=t1
10 7 9 fveq12d m=tmm1=tt1
11 10 eleq1d m=tmm1Wtt1W
12 11 ralrab2 mtWordW|t0Dk1..^ttkranTtk1mm1WtWordWt0Dk1..^ttkranTtk1tt1W
13 eldifi tWordWtWordW
14 wrdf tWordWt:0..^tW
15 13 14 syl tWordWt:0..^tW
16 eldifsn tWordWtWordWt
17 lennncl tWordWtt
18 16 17 sylbi tWordWt
19 fzo0end tt10..^t
20 18 19 syl tWordWt10..^t
21 15 20 ffvelcdmd tWordWtt1W
22 21 a1d tWordWt0Dk1..^ttkranTtk1tt1W
23 12 22 mprgbir mtWordW|t0Dk1..^ttkranTtk1mm1W
24 6 fmpt mtWordW|t0Dk1..^ttkranTtk1mm1WS:tWordW|t0Dk1..^ttkranTtk1W
25 23 24 mpbi S:tWordW|t0Dk1..^ttkranTtk1W