| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
| 2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
| 3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
| 4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
| 5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
| 6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
| 7 |
1 2 3 4 5 6
|
efgsdm |
|- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 8 |
7
|
simp1bi |
|- ( F e. dom S -> F e. ( Word W \ { (/) } ) ) |
| 9 |
8
|
eldifad |
|- ( F e. dom S -> F e. Word W ) |
| 10 |
1 2 3 4 5 6
|
efgsf |
|- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
| 11 |
10
|
fdmi |
|- dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |
| 12 |
11
|
feq2i |
|- ( S : dom S --> W <-> S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W ) |
| 13 |
10 12
|
mpbir |
|- S : dom S --> W |
| 14 |
13
|
ffvelcdmi |
|- ( F e. dom S -> ( S ` F ) e. W ) |
| 15 |
1 2 3 4
|
efgtf |
|- ( ( S ` F ) e. W -> ( ( T ` ( S ` F ) ) = ( a e. ( 0 ... ( # ` ( S ` F ) ) ) , i e. ( I X. 2o ) |-> ( ( S ` F ) splice <. a , a , <" i ( M ` i ) "> >. ) ) /\ ( T ` ( S ` F ) ) : ( ( 0 ... ( # ` ( S ` F ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 16 |
14 15
|
syl |
|- ( F e. dom S -> ( ( T ` ( S ` F ) ) = ( a e. ( 0 ... ( # ` ( S ` F ) ) ) , i e. ( I X. 2o ) |-> ( ( S ` F ) splice <. a , a , <" i ( M ` i ) "> >. ) ) /\ ( T ` ( S ` F ) ) : ( ( 0 ... ( # ` ( S ` F ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 17 |
16
|
simprd |
|- ( F e. dom S -> ( T ` ( S ` F ) ) : ( ( 0 ... ( # ` ( S ` F ) ) ) X. ( I X. 2o ) ) --> W ) |
| 18 |
17
|
frnd |
|- ( F e. dom S -> ran ( T ` ( S ` F ) ) C_ W ) |
| 19 |
18
|
sselda |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A e. W ) |
| 20 |
19
|
s1cld |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> <" A "> e. Word W ) |
| 21 |
|
ccatcl |
|- ( ( F e. Word W /\ <" A "> e. Word W ) -> ( F ++ <" A "> ) e. Word W ) |
| 22 |
9 20 21
|
syl2an2r |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) e. Word W ) |
| 23 |
|
ccatws1n0 |
|- ( F e. Word W -> ( F ++ <" A "> ) =/= (/) ) |
| 24 |
9 23
|
syl |
|- ( F e. dom S -> ( F ++ <" A "> ) =/= (/) ) |
| 25 |
24
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) =/= (/) ) |
| 26 |
|
eldifsn |
|- ( ( F ++ <" A "> ) e. ( Word W \ { (/) } ) <-> ( ( F ++ <" A "> ) e. Word W /\ ( F ++ <" A "> ) =/= (/) ) ) |
| 27 |
22 25 26
|
sylanbrc |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) e. ( Word W \ { (/) } ) ) |
| 28 |
9
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> F e. Word W ) |
| 29 |
|
eldifsni |
|- ( F e. ( Word W \ { (/) } ) -> F =/= (/) ) |
| 30 |
8 29
|
syl |
|- ( F e. dom S -> F =/= (/) ) |
| 31 |
|
len0nnbi |
|- ( F e. Word W -> ( F =/= (/) <-> ( # ` F ) e. NN ) ) |
| 32 |
9 31
|
syl |
|- ( F e. dom S -> ( F =/= (/) <-> ( # ` F ) e. NN ) ) |
| 33 |
30 32
|
mpbid |
|- ( F e. dom S -> ( # ` F ) e. NN ) |
| 34 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
| 35 |
33 34
|
sylibr |
|- ( F e. dom S -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 36 |
35
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 37 |
|
ccatval1 |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` 0 ) = ( F ` 0 ) ) |
| 38 |
28 20 36 37
|
syl3anc |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` 0 ) = ( F ` 0 ) ) |
| 39 |
7
|
simp2bi |
|- ( F e. dom S -> ( F ` 0 ) e. D ) |
| 40 |
39
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ` 0 ) e. D ) |
| 41 |
38 40
|
eqeltrd |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` 0 ) e. D ) |
| 42 |
7
|
simp3bi |
|- ( F e. dom S -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 43 |
42
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 44 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
| 45 |
44
|
sseli |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
| 46 |
|
ccatval1 |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` i ) = ( F ` i ) ) |
| 47 |
45 46
|
syl3an3 |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` i ) = ( F ` i ) ) |
| 48 |
|
elfzoel2 |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. ZZ ) |
| 49 |
|
peano2zm |
|- ( ( # ` F ) e. ZZ -> ( ( # ` F ) - 1 ) e. ZZ ) |
| 50 |
48 49
|
syl |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. ZZ ) |
| 51 |
48
|
zred |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. RR ) |
| 52 |
51
|
lem1d |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) <_ ( # ` F ) ) |
| 53 |
|
eluz2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) <-> ( ( ( # ` F ) - 1 ) e. ZZ /\ ( # ` F ) e. ZZ /\ ( ( # ` F ) - 1 ) <_ ( # ` F ) ) ) |
| 54 |
50 48 52 53
|
syl3anbrc |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
| 55 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 56 |
54 55
|
syl |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 57 |
|
elfzo1elm1fzo0 |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( i - 1 ) e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) |
| 58 |
56 57
|
sseldd |
|- ( i e. ( 1 ..^ ( # ` F ) ) -> ( i - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 59 |
|
ccatval1 |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ ( i - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( i - 1 ) ) = ( F ` ( i - 1 ) ) ) |
| 60 |
58 59
|
syl3an3 |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( i - 1 ) ) = ( F ` ( i - 1 ) ) ) |
| 61 |
60
|
fveq2d |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ( T ` ( F ` ( i - 1 ) ) ) ) |
| 62 |
61
|
rneqd |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 63 |
47 62
|
eleq12d |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 64 |
63
|
3expa |
|- ( ( ( F e. Word W /\ <" A "> e. Word W ) /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 65 |
64
|
ralbidva |
|- ( ( F e. Word W /\ <" A "> e. Word W ) -> ( A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 66 |
9 20 65
|
syl2an2r |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 67 |
43 66
|
mpbird |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 68 |
|
lencl |
|- ( F e. Word W -> ( # ` F ) e. NN0 ) |
| 69 |
9 68
|
syl |
|- ( F e. dom S -> ( # ` F ) e. NN0 ) |
| 70 |
69
|
nn0cnd |
|- ( F e. dom S -> ( # ` F ) e. CC ) |
| 71 |
70
|
addlidd |
|- ( F e. dom S -> ( 0 + ( # ` F ) ) = ( # ` F ) ) |
| 72 |
71
|
fveq2d |
|- ( F e. dom S -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( ( F ++ <" A "> ) ` ( # ` F ) ) ) |
| 73 |
72
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( ( F ++ <" A "> ) ` ( # ` F ) ) ) |
| 74 |
|
s1len |
|- ( # ` <" A "> ) = 1 |
| 75 |
|
1nn |
|- 1 e. NN |
| 76 |
74 75
|
eqeltri |
|- ( # ` <" A "> ) e. NN |
| 77 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` <" A "> ) ) <-> ( # ` <" A "> ) e. NN ) |
| 78 |
76 77
|
mpbir |
|- 0 e. ( 0 ..^ ( # ` <" A "> ) ) |
| 79 |
78
|
a1i |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> 0 e. ( 0 ..^ ( # ` <" A "> ) ) ) |
| 80 |
|
ccatval3 |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ 0 e. ( 0 ..^ ( # ` <" A "> ) ) ) -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( <" A "> ` 0 ) ) |
| 81 |
28 20 79 80
|
syl3anc |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( <" A "> ` 0 ) ) |
| 82 |
73 81
|
eqtr3d |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( # ` F ) ) = ( <" A "> ` 0 ) ) |
| 83 |
|
simpr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A e. ran ( T ` ( S ` F ) ) ) |
| 84 |
|
s1fv |
|- ( A e. ran ( T ` ( S ` F ) ) -> ( <" A "> ` 0 ) = A ) |
| 85 |
84
|
adantl |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( <" A "> ` 0 ) = A ) |
| 86 |
|
fzo0end |
|- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 87 |
33 86
|
syl |
|- ( F e. dom S -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 88 |
87
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 89 |
|
ccatval1 |
|- ( ( F e. Word W /\ <" A "> e. Word W /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 90 |
28 20 88 89
|
syl3anc |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 91 |
1 2 3 4 5 6
|
efgsval |
|- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 92 |
91
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 93 |
90 92
|
eqtr4d |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) = ( S ` F ) ) |
| 94 |
93
|
fveq2d |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) = ( T ` ( S ` F ) ) ) |
| 95 |
94
|
rneqd |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) = ran ( T ` ( S ` F ) ) ) |
| 96 |
83 85 95
|
3eltr4d |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( <" A "> ` 0 ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 97 |
82 96
|
eqeltrd |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( # ` F ) ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 98 |
|
fvex |
|- ( # ` F ) e. _V |
| 99 |
|
fveq2 |
|- ( i = ( # ` F ) -> ( ( F ++ <" A "> ) ` i ) = ( ( F ++ <" A "> ) ` ( # ` F ) ) ) |
| 100 |
|
fvoveq1 |
|- ( i = ( # ` F ) -> ( ( F ++ <" A "> ) ` ( i - 1 ) ) = ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) |
| 101 |
100
|
fveq2d |
|- ( i = ( # ` F ) -> ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 102 |
101
|
rneqd |
|- ( i = ( # ` F ) -> ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 103 |
99 102
|
eleq12d |
|- ( i = ( # ` F ) -> ( ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( ( F ++ <" A "> ) ` ( # ` F ) ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 104 |
98 103
|
ralsn |
|- ( A. i e. { ( # ` F ) } ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( ( F ++ <" A "> ) ` ( # ` F ) ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 105 |
97 104
|
sylibr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. { ( # ` F ) } ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 106 |
|
ralunb |
|- ( A. i e. ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) /\ A. i e. { ( # ` F ) } ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) ) |
| 107 |
67 105 106
|
sylanbrc |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 108 |
|
ccatlen |
|- ( ( F e. Word W /\ <" A "> e. Word W ) -> ( # ` ( F ++ <" A "> ) ) = ( ( # ` F ) + ( # ` <" A "> ) ) ) |
| 109 |
9 20 108
|
syl2an2r |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( # ` ( F ++ <" A "> ) ) = ( ( # ` F ) + ( # ` <" A "> ) ) ) |
| 110 |
74
|
oveq2i |
|- ( ( # ` F ) + ( # ` <" A "> ) ) = ( ( # ` F ) + 1 ) |
| 111 |
109 110
|
eqtrdi |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( # ` ( F ++ <" A "> ) ) = ( ( # ` F ) + 1 ) ) |
| 112 |
111
|
oveq2d |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) = ( 1 ..^ ( ( # ` F ) + 1 ) ) ) |
| 113 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 114 |
33 113
|
eleqtrdi |
|- ( F e. dom S -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
| 115 |
|
fzosplitsn |
|- ( ( # ` F ) e. ( ZZ>= ` 1 ) -> ( 1 ..^ ( ( # ` F ) + 1 ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 116 |
114 115
|
syl |
|- ( F e. dom S -> ( 1 ..^ ( ( # ` F ) + 1 ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 117 |
116
|
adantr |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( 1 ..^ ( ( # ` F ) + 1 ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 118 |
112 117
|
eqtrd |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 119 |
107 118
|
raleqtrrdv |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 120 |
1 2 3 4 5 6
|
efgsdm |
|- ( ( F ++ <" A "> ) e. dom S <-> ( ( F ++ <" A "> ) e. ( Word W \ { (/) } ) /\ ( ( F ++ <" A "> ) ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) ) |
| 121 |
27 41 119 120
|
syl3anbrc |
|- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) e. dom S ) |