Metamath Proof Explorer


Theorem efgred2

Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
Assertion efgred2 ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) → ( ( 𝑆𝐴 ) ( 𝑆𝐵 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
6 efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
7 1 2 3 4 5 6 efgsfo 𝑆 : dom 𝑆onto𝑊
8 fof ( 𝑆 : dom 𝑆onto𝑊𝑆 : dom 𝑆𝑊 )
9 7 8 ax-mp 𝑆 : dom 𝑆𝑊
10 9 ffvelrni ( 𝐵 ∈ dom 𝑆 → ( 𝑆𝐵 ) ∈ 𝑊 )
11 10 ad2antlr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝑆𝐵 ) ∈ 𝑊 )
12 1 2 3 4 5 6 efgredeu ( ( 𝑆𝐵 ) ∈ 𝑊 → ∃! 𝑑𝐷 𝑑 ( 𝑆𝐵 ) )
13 reurmo ( ∃! 𝑑𝐷 𝑑 ( 𝑆𝐵 ) → ∃* 𝑑𝐷 𝑑 ( 𝑆𝐵 ) )
14 11 12 13 3syl ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ∃* 𝑑𝐷 𝑑 ( 𝑆𝐵 ) )
15 1 2 3 4 5 6 efgsdm ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑖 − 1 ) ) ) ) )
16 15 simp2bi ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ∈ 𝐷 )
17 16 ad2antrr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝐴 ‘ 0 ) ∈ 𝐷 )
18 1 2 efger Er 𝑊
19 18 a1i ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → Er 𝑊 )
20 1 2 3 4 5 6 efgsrel ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ( 𝑆𝐴 ) )
21 20 ad2antrr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝐴 ‘ 0 ) ( 𝑆𝐴 ) )
22 simpr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝑆𝐴 ) ( 𝑆𝐵 ) )
23 19 21 22 ertrd ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝐴 ‘ 0 ) ( 𝑆𝐵 ) )
24 1 2 3 4 5 6 efgsdm ( 𝐵 ∈ dom 𝑆 ↔ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐵 ) ) ( 𝐵𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( 𝑖 − 1 ) ) ) ) )
25 24 simp2bi ( 𝐵 ∈ dom 𝑆 → ( 𝐵 ‘ 0 ) ∈ 𝐷 )
26 25 ad2antlr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝐵 ‘ 0 ) ∈ 𝐷 )
27 1 2 3 4 5 6 efgsrel ( 𝐵 ∈ dom 𝑆 → ( 𝐵 ‘ 0 ) ( 𝑆𝐵 ) )
28 27 ad2antlr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝐵 ‘ 0 ) ( 𝑆𝐵 ) )
29 breq1 ( 𝑑 = ( 𝐴 ‘ 0 ) → ( 𝑑 ( 𝑆𝐵 ) ↔ ( 𝐴 ‘ 0 ) ( 𝑆𝐵 ) ) )
30 breq1 ( 𝑑 = ( 𝐵 ‘ 0 ) → ( 𝑑 ( 𝑆𝐵 ) ↔ ( 𝐵 ‘ 0 ) ( 𝑆𝐵 ) ) )
31 29 30 rmoi ( ( ∃* 𝑑𝐷 𝑑 ( 𝑆𝐵 ) ∧ ( ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ( 𝐴 ‘ 0 ) ( 𝑆𝐵 ) ) ∧ ( ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ( 𝐵 ‘ 0 ) ( 𝑆𝐵 ) ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) )
32 14 17 23 26 28 31 syl122anc ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆𝐴 ) ( 𝑆𝐵 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) )
33 18 a1i ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → Er 𝑊 )
34 20 ad2antrr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) ( 𝑆𝐴 ) )
35 simpr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) )
36 27 ad2antlr ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐵 ‘ 0 ) ( 𝑆𝐵 ) )
37 35 36 eqbrtrd ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) ( 𝑆𝐵 ) )
38 33 34 37 ertr3d ( ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝑆𝐴 ) ( 𝑆𝐵 ) )
39 32 38 impbida ( ( 𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ) → ( ( 𝑆𝐴 ) ( 𝑆𝐵 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) )