Metamath Proof Explorer


Theorem efgred2

Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgred2 AdomSBdomSSA˙SBA0=B0

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 1 2 3 4 5 6 efgsfo S:domSontoW
8 fof S:domSontoWS:domSW
9 7 8 ax-mp S:domSW
10 9 ffvelcdmi BdomSSBW
11 10 ad2antlr AdomSBdomSSA˙SBSBW
12 1 2 3 4 5 6 efgredeu SBW∃!dDd˙SB
13 reurmo ∃!dDd˙SB*dDd˙SB
14 11 12 13 3syl AdomSBdomSSA˙SB*dDd˙SB
15 1 2 3 4 5 6 efgsdm AdomSAWordWA0Di1..^AAiranTAi1
16 15 simp2bi AdomSA0D
17 16 ad2antrr AdomSBdomSSA˙SBA0D
18 1 2 efger ˙ErW
19 18 a1i AdomSBdomSSA˙SB˙ErW
20 1 2 3 4 5 6 efgsrel AdomSA0˙SA
21 20 ad2antrr AdomSBdomSSA˙SBA0˙SA
22 simpr AdomSBdomSSA˙SBSA˙SB
23 19 21 22 ertrd AdomSBdomSSA˙SBA0˙SB
24 1 2 3 4 5 6 efgsdm BdomSBWordWB0Di1..^BBiranTBi1
25 24 simp2bi BdomSB0D
26 25 ad2antlr AdomSBdomSSA˙SBB0D
27 1 2 3 4 5 6 efgsrel BdomSB0˙SB
28 27 ad2antlr AdomSBdomSSA˙SBB0˙SB
29 breq1 d=A0d˙SBA0˙SB
30 breq1 d=B0d˙SBB0˙SB
31 29 30 rmoi *dDd˙SBA0DA0˙SBB0DB0˙SBA0=B0
32 14 17 23 26 28 31 syl122anc AdomSBdomSSA˙SBA0=B0
33 18 a1i AdomSBdomSA0=B0˙ErW
34 20 ad2antrr AdomSBdomSA0=B0A0˙SA
35 simpr AdomSBdomSA0=B0A0=B0
36 27 ad2antlr AdomSBdomSA0=B0B0˙SB
37 35 36 eqbrtrd AdomSBdomSA0=B0A0˙SB
38 33 34 37 ertr3d AdomSBdomSA0=B0SA˙SB
39 32 38 impbida AdomSBdomSSA˙SBA0=B0