| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 | 1 2 3 4 5 6 | efgsfo |  |-  S : dom S -onto-> W | 
						
							| 8 |  | fof |  |-  ( S : dom S -onto-> W -> S : dom S --> W ) | 
						
							| 9 | 7 8 | ax-mp |  |-  S : dom S --> W | 
						
							| 10 | 9 | ffvelcdmi |  |-  ( B e. dom S -> ( S ` B ) e. W ) | 
						
							| 11 | 10 | ad2antlr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( S ` B ) e. W ) | 
						
							| 12 | 1 2 3 4 5 6 | efgredeu |  |-  ( ( S ` B ) e. W -> E! d e. D d .~ ( S ` B ) ) | 
						
							| 13 |  | reurmo |  |-  ( E! d e. D d .~ ( S ` B ) -> E* d e. D d .~ ( S ` B ) ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> E* d e. D d .~ ( S ` B ) ) | 
						
							| 15 | 1 2 3 4 5 6 | efgsdm |  |-  ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) | 
						
							| 16 | 15 | simp2bi |  |-  ( A e. dom S -> ( A ` 0 ) e. D ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) e. D ) | 
						
							| 18 | 1 2 | efger |  |-  .~ Er W | 
						
							| 19 | 18 | a1i |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> .~ Er W ) | 
						
							| 20 | 1 2 3 4 5 6 | efgsrel |  |-  ( A e. dom S -> ( A ` 0 ) .~ ( S ` A ) ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) .~ ( S ` A ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( S ` A ) .~ ( S ` B ) ) | 
						
							| 23 | 19 21 22 | ertrd |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) .~ ( S ` B ) ) | 
						
							| 24 | 1 2 3 4 5 6 | efgsdm |  |-  ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) | 
						
							| 25 | 24 | simp2bi |  |-  ( B e. dom S -> ( B ` 0 ) e. D ) | 
						
							| 26 | 25 | ad2antlr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( B ` 0 ) e. D ) | 
						
							| 27 | 1 2 3 4 5 6 | efgsrel |  |-  ( B e. dom S -> ( B ` 0 ) .~ ( S ` B ) ) | 
						
							| 28 | 27 | ad2antlr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( B ` 0 ) .~ ( S ` B ) ) | 
						
							| 29 |  | breq1 |  |-  ( d = ( A ` 0 ) -> ( d .~ ( S ` B ) <-> ( A ` 0 ) .~ ( S ` B ) ) ) | 
						
							| 30 |  | breq1 |  |-  ( d = ( B ` 0 ) -> ( d .~ ( S ` B ) <-> ( B ` 0 ) .~ ( S ` B ) ) ) | 
						
							| 31 | 29 30 | rmoi |  |-  ( ( E* d e. D d .~ ( S ` B ) /\ ( ( A ` 0 ) e. D /\ ( A ` 0 ) .~ ( S ` B ) ) /\ ( ( B ` 0 ) e. D /\ ( B ` 0 ) .~ ( S ` B ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 32 | 14 17 23 26 28 31 | syl122anc |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 33 | 18 | a1i |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> .~ Er W ) | 
						
							| 34 | 20 | ad2antrr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) .~ ( S ` A ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 36 | 27 | ad2antlr |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( B ` 0 ) .~ ( S ` B ) ) | 
						
							| 37 | 35 36 | eqbrtrd |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) .~ ( S ` B ) ) | 
						
							| 38 | 33 34 37 | ertr3d |  |-  ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( S ` A ) .~ ( S ` B ) ) | 
						
							| 39 | 32 38 | impbida |  |-  ( ( A e. dom S /\ B e. dom S ) -> ( ( S ` A ) .~ ( S ` B ) <-> ( A ` 0 ) = ( B ` 0 ) ) ) |