Metamath Proof Explorer


Theorem efgcpbllema

Description: Lemma for efgrelex . Define an auxiliary equivalence relation L such that A L B if there are sequences from A to B passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgcpbllem.1 L=ij|ijWA++i++B˙A++j++B
Assertion efgcpbllema XLYXWYWA++X++B˙A++Y++B

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgcpbllem.1 L=ij|ijWA++i++B˙A++j++B
8 oveq2 i=XA++i=A++X
9 8 oveq1d i=XA++i++B=A++X++B
10 oveq2 j=YA++j=A++Y
11 10 oveq1d j=YA++j++B=A++Y++B
12 9 11 breqan12d i=Xj=YA++i++B˙A++j++BA++X++B˙A++Y++B
13 vex iV
14 vex jV
15 13 14 prss iWjWijW
16 15 anbi1i iWjWA++i++B˙A++j++BijWA++i++B˙A++j++B
17 16 opabbii ij|iWjWA++i++B˙A++j++B=ij|ijWA++i++B˙A++j++B
18 7 17 eqtr4i L=ij|iWjWA++i++B˙A++j++B
19 12 18 brab2a XLYXWYWA++X++B˙A++Y++B
20 df-3an XWYWA++X++B˙A++Y++BXWYWA++X++B˙A++Y++B
21 19 20 bitr4i XLYXWYWA++X++B˙A++Y++B