Metamath Proof Explorer


Theorem efgcpbl

Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgcpbl AWBWX˙YA++X++B˙A++Y++B

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 eqid ij|ijWA++i++B˙A++j++B=ij|ijWA++i++B˙A++j++B
8 1 2 3 4 5 6 7 efgcpbllemb AWBW˙ij|ijWA++i++B˙A++j++B
9 8 ssbrd AWBWX˙YXij|ijWA++i++B˙A++j++BY
10 9 3impia AWBWX˙YXij|ijWA++i++B˙A++j++BY
11 1 2 3 4 5 6 7 efgcpbllema Xij|ijWA++i++B˙A++j++BYXWYWA++X++B˙A++Y++B
12 11 simp3bi Xij|ijWA++i++B˙A++j++BYA++X++B˙A++Y++B
13 10 12 syl AWBWX˙YA++X++B˙A++Y++B