Metamath Proof Explorer


Theorem efieq

Description: The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion efieq
|- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) )

Proof

Step Hyp Ref Expression
1 recn
 |-  ( A e. RR -> A e. CC )
2 recn
 |-  ( B e. RR -> B e. CC )
3 efival
 |-  ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) )
4 efival
 |-  ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) )
5 3 4 eqeqan12d
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) )
6 1 2 5 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) )
7 recoscl
 |-  ( A e. RR -> ( cos ` A ) e. RR )
8 resincl
 |-  ( A e. RR -> ( sin ` A ) e. RR )
9 7 8 jca
 |-  ( A e. RR -> ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) )
10 recoscl
 |-  ( B e. RR -> ( cos ` B ) e. RR )
11 resincl
 |-  ( B e. RR -> ( sin ` B ) e. RR )
12 10 11 jca
 |-  ( B e. RR -> ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) )
13 cru
 |-  ( ( ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) /\ ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) )
14 9 12 13 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) )
15 6 14 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) )