Metamath Proof Explorer


Theorem efvmacl

Description: The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion efvmacl
|- ( A e. NN -> ( exp ` ( Lam ` A ) ) e. NN )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( ( Lam ` A ) = 0 -> ( exp ` ( Lam ` A ) ) = ( exp ` 0 ) )
2 ef0
 |-  ( exp ` 0 ) = 1
3 1 2 eqtrdi
 |-  ( ( Lam ` A ) = 0 -> ( exp ` ( Lam ` A ) ) = 1 )
4 3 eleq1d
 |-  ( ( Lam ` A ) = 0 -> ( ( exp ` ( Lam ` A ) ) e. NN <-> 1 e. NN ) )
5 isppw2
 |-  ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) )
6 vmappw
 |-  ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) )
7 6 fveq2d
 |-  ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( Lam ` ( p ^ k ) ) ) = ( exp ` ( log ` p ) ) )
8 prmnn
 |-  ( p e. Prime -> p e. NN )
9 8 nnrpd
 |-  ( p e. Prime -> p e. RR+ )
10 9 reeflogd
 |-  ( p e. Prime -> ( exp ` ( log ` p ) ) = p )
11 10 8 eqeltrd
 |-  ( p e. Prime -> ( exp ` ( log ` p ) ) e. NN )
12 11 adantr
 |-  ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( log ` p ) ) e. NN )
13 7 12 eqeltrd
 |-  ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( Lam ` ( p ^ k ) ) ) e. NN )
14 fveq2
 |-  ( A = ( p ^ k ) -> ( Lam ` A ) = ( Lam ` ( p ^ k ) ) )
15 14 fveq2d
 |-  ( A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) = ( exp ` ( Lam ` ( p ^ k ) ) ) )
16 15 eleq1d
 |-  ( A = ( p ^ k ) -> ( ( exp ` ( Lam ` A ) ) e. NN <-> ( exp ` ( Lam ` ( p ^ k ) ) ) e. NN ) )
17 13 16 syl5ibrcom
 |-  ( ( p e. Prime /\ k e. NN ) -> ( A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) e. NN ) )
18 17 rexlimivv
 |-  ( E. p e. Prime E. k e. NN A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) e. NN )
19 5 18 syl6bi
 |-  ( A e. NN -> ( ( Lam ` A ) =/= 0 -> ( exp ` ( Lam ` A ) ) e. NN ) )
20 19 imp
 |-  ( ( A e. NN /\ ( Lam ` A ) =/= 0 ) -> ( exp ` ( Lam ` A ) ) e. NN )
21 1nn
 |-  1 e. NN
22 21 a1i
 |-  ( A e. NN -> 1 e. NN )
23 4 20 22 pm2.61ne
 |-  ( A e. NN -> ( exp ` ( Lam ` A ) ) e. NN )