| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isppw |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E! q e. Prime q || A ) ) |
| 2 |
|
reu6 |
|- ( E! q e. Prime q || A <-> E. p e. Prime A. q e. Prime ( q || A <-> q = p ) ) |
| 3 |
|
equid |
|- p = p |
| 4 |
|
breq1 |
|- ( q = p -> ( q || A <-> p || A ) ) |
| 5 |
|
equequ1 |
|- ( q = p -> ( q = p <-> p = p ) ) |
| 6 |
4 5
|
bibi12d |
|- ( q = p -> ( ( q || A <-> q = p ) <-> ( p || A <-> p = p ) ) ) |
| 7 |
6
|
rspcva |
|- ( ( p e. Prime /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p || A <-> p = p ) ) |
| 8 |
7
|
adantll |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p || A <-> p = p ) ) |
| 9 |
3 8
|
mpbiri |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> p || A ) |
| 10 |
|
simplr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> p e. Prime ) |
| 11 |
|
simpll |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A e. NN ) |
| 12 |
|
pcelnn |
|- ( ( p e. Prime /\ A e. NN ) -> ( ( p pCnt A ) e. NN <-> p || A ) ) |
| 13 |
10 11 12
|
syl2anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( ( p pCnt A ) e. NN <-> p || A ) ) |
| 14 |
9 13
|
mpbird |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p pCnt A ) e. NN ) |
| 15 |
|
simpr |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> q = p ) |
| 16 |
15
|
oveq1d |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt A ) = ( p pCnt A ) ) |
| 17 |
|
simpllr |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> p e. Prime ) |
| 18 |
|
pccl |
|- ( ( p e. Prime /\ A e. NN ) -> ( p pCnt A ) e. NN0 ) |
| 19 |
18
|
ancoms |
|- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( p pCnt A ) e. NN0 ) |
| 21 |
20
|
nn0zd |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( p pCnt A ) e. ZZ ) |
| 22 |
|
pcid |
|- ( ( p e. Prime /\ ( p pCnt A ) e. ZZ ) -> ( p pCnt ( p ^ ( p pCnt A ) ) ) = ( p pCnt A ) ) |
| 23 |
17 21 22
|
syl2anc |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( p pCnt ( p ^ ( p pCnt A ) ) ) = ( p pCnt A ) ) |
| 24 |
16 23
|
eqtr4d |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt A ) = ( p pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 25 |
15
|
oveq1d |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt ( p ^ ( p pCnt A ) ) ) = ( p pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 26 |
24 25
|
eqtr4d |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 27 |
|
simprr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( q || A <-> q = p ) ) |
| 28 |
27
|
notbid |
|- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( -. q || A <-> -. q = p ) ) |
| 29 |
28
|
biimpar |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> -. q || A ) |
| 30 |
|
simplrl |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> q e. Prime ) |
| 31 |
|
simplll |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> A e. NN ) |
| 32 |
|
pceq0 |
|- ( ( q e. Prime /\ A e. NN ) -> ( ( q pCnt A ) = 0 <-> -. q || A ) ) |
| 33 |
30 31 32
|
syl2anc |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( ( q pCnt A ) = 0 <-> -. q || A ) ) |
| 34 |
29 33
|
mpbird |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( q pCnt A ) = 0 ) |
| 35 |
|
simprl |
|- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> q e. Prime ) |
| 36 |
|
simplr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> p e. Prime ) |
| 37 |
19
|
adantr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( p pCnt A ) e. NN0 ) |
| 38 |
|
prmdvdsexpr |
|- ( ( q e. Prime /\ p e. Prime /\ ( p pCnt A ) e. NN0 ) -> ( q || ( p ^ ( p pCnt A ) ) -> q = p ) ) |
| 39 |
35 36 37 38
|
syl3anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( q || ( p ^ ( p pCnt A ) ) -> q = p ) ) |
| 40 |
39
|
con3dimp |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> -. q || ( p ^ ( p pCnt A ) ) ) |
| 41 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 42 |
41
|
adantl |
|- ( ( A e. NN /\ p e. Prime ) -> p e. NN ) |
| 43 |
42 19
|
nnexpcld |
|- ( ( A e. NN /\ p e. Prime ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
| 44 |
43
|
ad2antrr |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
| 45 |
|
pceq0 |
|- ( ( q e. Prime /\ ( p ^ ( p pCnt A ) ) e. NN ) -> ( ( q pCnt ( p ^ ( p pCnt A ) ) ) = 0 <-> -. q || ( p ^ ( p pCnt A ) ) ) ) |
| 46 |
30 44 45
|
syl2anc |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( ( q pCnt ( p ^ ( p pCnt A ) ) ) = 0 <-> -. q || ( p ^ ( p pCnt A ) ) ) ) |
| 47 |
40 46
|
mpbird |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( q pCnt ( p ^ ( p pCnt A ) ) ) = 0 ) |
| 48 |
34 47
|
eqtr4d |
|- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 49 |
26 48
|
pm2.61dan |
|- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 50 |
49
|
expr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ q e. Prime ) -> ( ( q || A <-> q = p ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
| 51 |
50
|
ralimdva |
|- ( ( A e. NN /\ p e. Prime ) -> ( A. q e. Prime ( q || A <-> q = p ) -> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
| 52 |
51
|
imp |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 53 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A e. NN0 ) |
| 55 |
43
|
adantr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
| 56 |
55
|
nnnn0d |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p ^ ( p pCnt A ) ) e. NN0 ) |
| 57 |
|
pc11 |
|- ( ( A e. NN0 /\ ( p ^ ( p pCnt A ) ) e. NN0 ) -> ( A = ( p ^ ( p pCnt A ) ) <-> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
| 58 |
54 56 57
|
syl2anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( A = ( p ^ ( p pCnt A ) ) <-> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
| 59 |
52 58
|
mpbird |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A = ( p ^ ( p pCnt A ) ) ) |
| 60 |
|
oveq2 |
|- ( k = ( p pCnt A ) -> ( p ^ k ) = ( p ^ ( p pCnt A ) ) ) |
| 61 |
60
|
rspceeqv |
|- ( ( ( p pCnt A ) e. NN /\ A = ( p ^ ( p pCnt A ) ) ) -> E. k e. NN A = ( p ^ k ) ) |
| 62 |
14 59 61
|
syl2anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> E. k e. NN A = ( p ^ k ) ) |
| 63 |
62
|
ex |
|- ( ( A e. NN /\ p e. Prime ) -> ( A. q e. Prime ( q || A <-> q = p ) -> E. k e. NN A = ( p ^ k ) ) ) |
| 64 |
|
prmdvdsexpb |
|- ( ( q e. Prime /\ p e. Prime /\ k e. NN ) -> ( q || ( p ^ k ) <-> q = p ) ) |
| 65 |
64
|
3coml |
|- ( ( p e. Prime /\ k e. NN /\ q e. Prime ) -> ( q || ( p ^ k ) <-> q = p ) ) |
| 66 |
65
|
3expa |
|- ( ( ( p e. Prime /\ k e. NN ) /\ q e. Prime ) -> ( q || ( p ^ k ) <-> q = p ) ) |
| 67 |
66
|
ralrimiva |
|- ( ( p e. Prime /\ k e. NN ) -> A. q e. Prime ( q || ( p ^ k ) <-> q = p ) ) |
| 68 |
67
|
adantll |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> A. q e. Prime ( q || ( p ^ k ) <-> q = p ) ) |
| 69 |
|
breq2 |
|- ( A = ( p ^ k ) -> ( q || A <-> q || ( p ^ k ) ) ) |
| 70 |
69
|
bibi1d |
|- ( A = ( p ^ k ) -> ( ( q || A <-> q = p ) <-> ( q || ( p ^ k ) <-> q = p ) ) ) |
| 71 |
70
|
ralbidv |
|- ( A = ( p ^ k ) -> ( A. q e. Prime ( q || A <-> q = p ) <-> A. q e. Prime ( q || ( p ^ k ) <-> q = p ) ) ) |
| 72 |
68 71
|
syl5ibrcom |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( A = ( p ^ k ) -> A. q e. Prime ( q || A <-> q = p ) ) ) |
| 73 |
72
|
rexlimdva |
|- ( ( A e. NN /\ p e. Prime ) -> ( E. k e. NN A = ( p ^ k ) -> A. q e. Prime ( q || A <-> q = p ) ) ) |
| 74 |
63 73
|
impbid |
|- ( ( A e. NN /\ p e. Prime ) -> ( A. q e. Prime ( q || A <-> q = p ) <-> E. k e. NN A = ( p ^ k ) ) ) |
| 75 |
74
|
rexbidva |
|- ( A e. NN -> ( E. p e. Prime A. q e. Prime ( q || A <-> q = p ) <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
| 76 |
2 75
|
bitrid |
|- ( A e. NN -> ( E! q e. Prime q || A <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
| 77 |
1 76
|
bitrd |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |