| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isppw |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃! 𝑞 ∈ ℙ 𝑞 ∥ 𝐴 ) ) |
| 2 |
|
reu6 |
⊢ ( ∃! 𝑞 ∈ ℙ 𝑞 ∥ 𝐴 ↔ ∃ 𝑝 ∈ ℙ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) |
| 3 |
|
equid |
⊢ 𝑝 = 𝑝 |
| 4 |
|
breq1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 ∥ 𝐴 ↔ 𝑝 ∥ 𝐴 ) ) |
| 5 |
|
equequ1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 = 𝑝 ↔ 𝑝 = 𝑝 ) ) |
| 6 |
4 5
|
bibi12d |
⊢ ( 𝑞 = 𝑝 → ( ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ( 𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝 ) ) ) |
| 7 |
6
|
rspcva |
⊢ ( ( 𝑝 ∈ ℙ ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝 ) ) |
| 8 |
7
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝 ) ) |
| 9 |
3 8
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝑝 ∥ 𝐴 ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝑝 ∈ ℙ ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝐴 ∈ ℕ ) |
| 12 |
|
pcelnn |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) |
| 14 |
9 13
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ ) |
| 15 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → 𝑞 = 𝑝 ) |
| 16 |
15
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐴 ) ) |
| 17 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → 𝑝 ∈ ℙ ) |
| 18 |
|
pccl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 19 |
18
|
ancoms |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 21 |
20
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
| 22 |
|
pcid |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) → ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) |
| 23 |
17 21 22
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) |
| 24 |
16 23
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 25 |
15
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 26 |
24 25
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 27 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) |
| 28 |
27
|
notbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( ¬ 𝑞 ∥ 𝐴 ↔ ¬ 𝑞 = 𝑝 ) ) |
| 29 |
28
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ¬ 𝑞 ∥ 𝐴 ) |
| 30 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → 𝑞 ∈ ℙ ) |
| 31 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → 𝐴 ∈ ℕ ) |
| 32 |
|
pceq0 |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑞 pCnt 𝐴 ) = 0 ↔ ¬ 𝑞 ∥ 𝐴 ) ) |
| 33 |
30 31 32
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( ( 𝑞 pCnt 𝐴 ) = 0 ↔ ¬ 𝑞 ∥ 𝐴 ) ) |
| 34 |
29 33
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = 0 ) |
| 35 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → 𝑞 ∈ ℙ ) |
| 36 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → 𝑝 ∈ ℙ ) |
| 37 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 38 |
|
prmdvdsexpr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) → ( 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) → 𝑞 = 𝑝 ) ) |
| 39 |
35 36 37 38
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) → 𝑞 = 𝑝 ) ) |
| 40 |
39
|
con3dimp |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ¬ 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) |
| 41 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
| 43 |
42 19
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
| 45 |
|
pceq0 |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) → ( ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 46 |
30 44 45
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 47 |
40 46
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = 0 ) |
| 48 |
34 47
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 49 |
26 48
|
pm2.61dan |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 50 |
49
|
expr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 51 |
50
|
ralimdva |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 52 |
51
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 53 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝐴 ∈ ℕ0 ) |
| 55 |
43
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
| 56 |
55
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ0 ) |
| 57 |
|
pc11 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ0 ) → ( 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 58 |
54 56 57
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 59 |
52 58
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) |
| 60 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑝 pCnt 𝐴 ) → ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) |
| 61 |
60
|
rspceeqv |
⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) → ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) |
| 62 |
14 59 61
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) |
| 63 |
62
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) → ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 64 |
|
prmdvdsexpb |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 65 |
64
|
3coml |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 66 |
65
|
3expa |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 67 |
66
|
ralrimiva |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 68 |
67
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 69 |
|
breq2 |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( 𝑞 ∥ 𝐴 ↔ 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ) ) |
| 70 |
69
|
bibi1d |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) ) |
| 71 |
70
|
ralbidv |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) ) |
| 72 |
68 71
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) |
| 73 |
72
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) |
| 74 |
63 73
|
impbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 75 |
74
|
rexbidva |
⊢ ( 𝐴 ∈ ℕ → ( ∃ 𝑝 ∈ ℙ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 76 |
2 75
|
bitrid |
⊢ ( 𝐴 ∈ ℕ → ( ∃! 𝑞 ∈ ℙ 𝑞 ∥ 𝐴 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 77 |
1 76
|
bitrd |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |