Metamath Proof Explorer


Theorem elabgw

Description: Membership in a class abstraction, using implicit substitution and an intermediate setvar y to avoid ax-10 , ax-11 , ax-12 . It also avoids a disjoint variable condition on x and A . This is to elabg what sbievw2 is to sbievw . (Contributed by SN, 20-Apr-2024)

Ref Expression
Hypotheses elabgw.1
|- ( x = y -> ( ph <-> ps ) )
elabgw.2
|- ( y = A -> ( ps <-> ch ) )
Assertion elabgw
|- ( A e. V -> ( A e. { x | ph } <-> ch ) )

Proof

Step Hyp Ref Expression
1 elabgw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 elabgw.2
 |-  ( y = A -> ( ps <-> ch ) )
3 eleq1
 |-  ( y = A -> ( y e. { x | ph } <-> A e. { x | ph } ) )
4 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
5 1 sbievw
 |-  ( [ y / x ] ph <-> ps )
6 4 5 bitri
 |-  ( y e. { x | ph } <-> ps )
7 3 2 6 vtoclbg
 |-  ( A e. V -> ( A e. { x | ph } <-> ch ) )