Description: Membership in a class abstraction, using two substitution hypotheses to avoid a disjoint variable condition on x and A . This is to elabg what sbievw2 is to sbievw . (Contributed by SN, 20-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabgw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| elabgw.2 | |- ( y = A -> ( ps <-> ch ) ) |
||
| Assertion | elabgw | |- ( A e. V -> ( A e. { x | ph } <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | elabgw.2 | |- ( y = A -> ( ps <-> ch ) ) |
|
| 3 | eleq1 | |- ( y = A -> ( y e. { x | ph } <-> A e. { x | ph } ) ) |
|
| 4 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 5 | 1 | sbievw | |- ( [ y / x ] ph <-> ps ) |
| 6 | 4 5 | bitri | |- ( y e. { x | ph } <-> ps ) |
| 7 | 3 2 6 | vtoclbg | |- ( A e. V -> ( A e. { x | ph } <-> ch ) ) |