Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 24-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnv | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv | |- `' R = { <. x , y >. | y R x } |
|
| 2 | 1 | eleq2i | |- ( A e. `' R <-> A e. { <. x , y >. | y R x } ) |
| 3 | elopab | |- ( A e. { <. x , y >. | y R x } <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) |
|
| 4 | 2 3 | bitri | |- ( A e. `' R <-> E. x E. y ( A = <. x , y >. /\ y R x ) ) |