Metamath Proof Explorer


Theorem eldisjssd

Description: Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021)

Ref Expression
Hypothesis eldisjssd.1
|- ( ph -> A C_ B )
Assertion eldisjssd
|- ( ph -> ( ElDisj B -> ElDisj A ) )

Proof

Step Hyp Ref Expression
1 eldisjssd.1
 |-  ( ph -> A C_ B )
2 eldisjss
 |-  ( A C_ B -> ( ElDisj B -> ElDisj A ) )
3 1 2 syl
 |-  ( ph -> ( ElDisj B -> ElDisj A ) )