Metamath Proof Explorer


Theorem eleq2w2ALT

Description: Alternate proof of eleq2w2 and special instance of eleq2 . (Contributed by BJ, 22-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eleq2w2ALT
|- ( A = B -> ( x e. A <-> x e. B ) )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( A = B <-> A. y ( y e. A <-> y e. B ) )
2 1 biimpi
 |-  ( A = B -> A. y ( y e. A <-> y e. B ) )
3 eleq1w
 |-  ( y = x -> ( y e. A <-> x e. A ) )
4 eleq1w
 |-  ( y = x -> ( y e. B <-> x e. B ) )
5 3 4 bibi12d
 |-  ( y = x -> ( ( y e. A <-> y e. B ) <-> ( x e. A <-> x e. B ) ) )
6 5 spvv
 |-  ( A. y ( y e. A <-> y e. B ) -> ( x e. A <-> x e. B ) )
7 2 6 syl
 |-  ( A = B -> ( x e. A <-> x e. B ) )