Metamath Proof Explorer


Theorem eleq2w2ALT

Description: Alternate proof of eleq2w2 and special instance of eleq2 . (Contributed by BJ, 22-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eleq2w2ALT A = B x A x B

Proof

Step Hyp Ref Expression
1 dfcleq A = B y y A y B
2 1 biimpi A = B y y A y B
3 eleq1w y = x y A x A
4 eleq1w y = x y B x B
5 3 4 bibi12d y = x y A y B x A x B
6 5 spvv y y A y B x A x B
7 2 6 syl A = B x A x B