Metamath Proof Explorer


Theorem elfzo0subge1

Description: The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is greater than or equal to 1. (Contributed by AV, 1-Sep-2025) (Proof shortened by SN, 18-Sep-2025)

Ref Expression
Assertion elfzo0subge1
|- ( A e. ( 0 ..^ B ) -> 1 <_ ( B - A ) )

Proof

Step Hyp Ref Expression
1 elfzoelz
 |-  ( A e. ( 0 ..^ B ) -> A e. ZZ )
2 1 zred
 |-  ( A e. ( 0 ..^ B ) -> A e. RR )
3 elfzoel2
 |-  ( A e. ( 0 ..^ B ) -> B e. ZZ )
4 3 zred
 |-  ( A e. ( 0 ..^ B ) -> B e. RR )
5 1red
 |-  ( A e. ( 0 ..^ B ) -> 1 e. RR )
6 elfzolem1
 |-  ( A e. ( 0 ..^ B ) -> A <_ ( B - 1 ) )
7 2 4 5 6 lesubd
 |-  ( A e. ( 0 ..^ B ) -> 1 <_ ( B - A ) )