Metamath Proof Explorer


Theorem elfzo0subge1

Description: The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is greater than or equal to 1. (Contributed by AV, 1-Sep-2025) (Proof shortened by SN, 18-Sep-2025)

Ref Expression
Assertion elfzo0subge1 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 1 ≤ ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 elfzoelz ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ℤ )
2 1 zred ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ℝ )
3 elfzoel2 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℤ )
4 3 zred ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℝ )
5 1red ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 1 ∈ ℝ )
6 elfzolem1 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ≤ ( 𝐵 − 1 ) )
7 2 4 5 6 lesubd ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 1 ≤ ( 𝐵𝐴 ) )