Step |
Hyp |
Ref |
Expression |
1 |
|
elim2if.1 |
|- ( if ( ph , A , if ( ps , B , C ) ) = A -> ( ch <-> th ) ) |
2 |
|
elim2if.2 |
|- ( if ( ph , A , if ( ps , B , C ) ) = B -> ( ch <-> ta ) ) |
3 |
|
elim2if.3 |
|- ( if ( ph , A , if ( ps , B , C ) ) = C -> ( ch <-> et ) ) |
4 |
|
elim2ifim.1 |
|- ( ph -> th ) |
5 |
|
elim2ifim.2 |
|- ( ( -. ph /\ ps ) -> ta ) |
6 |
|
elim2ifim.3 |
|- ( ( -. ph /\ -. ps ) -> et ) |
7 |
|
exmid |
|- ( ph \/ -. ph ) |
8 |
4
|
ancli |
|- ( ph -> ( ph /\ th ) ) |
9 |
|
pm4.42 |
|- ( -. ph <-> ( ( -. ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
10 |
5
|
ex |
|- ( -. ph -> ( ps -> ta ) ) |
11 |
10
|
ancld |
|- ( -. ph -> ( ps -> ( ps /\ ta ) ) ) |
12 |
11
|
imp |
|- ( ( -. ph /\ ps ) -> ( ps /\ ta ) ) |
13 |
6
|
ex |
|- ( -. ph -> ( -. ps -> et ) ) |
14 |
13
|
ancld |
|- ( -. ph -> ( -. ps -> ( -. ps /\ et ) ) ) |
15 |
14
|
imp |
|- ( ( -. ph /\ -. ps ) -> ( -. ps /\ et ) ) |
16 |
12 15
|
orim12i |
|- ( ( ( -. ph /\ ps ) \/ ( -. ph /\ -. ps ) ) -> ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) |
17 |
9 16
|
sylbi |
|- ( -. ph -> ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) |
18 |
17
|
ancli |
|- ( -. ph -> ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) |
19 |
8 18
|
orim12i |
|- ( ( ph \/ -. ph ) -> ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) ) |
20 |
7 19
|
ax-mp |
|- ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) |
21 |
1 2 3
|
elim2if |
|- ( ch <-> ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) ) |
22 |
20 21
|
mpbir |
|- ch |