| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elim2if.1 |
|- ( if ( ph , A , if ( ps , B , C ) ) = A -> ( ch <-> th ) ) |
| 2 |
|
elim2if.2 |
|- ( if ( ph , A , if ( ps , B , C ) ) = B -> ( ch <-> ta ) ) |
| 3 |
|
elim2if.3 |
|- ( if ( ph , A , if ( ps , B , C ) ) = C -> ( ch <-> et ) ) |
| 4 |
|
elim2ifim.1 |
|- ( ph -> th ) |
| 5 |
|
elim2ifim.2 |
|- ( ( -. ph /\ ps ) -> ta ) |
| 6 |
|
elim2ifim.3 |
|- ( ( -. ph /\ -. ps ) -> et ) |
| 7 |
|
exmid |
|- ( ph \/ -. ph ) |
| 8 |
4
|
ancli |
|- ( ph -> ( ph /\ th ) ) |
| 9 |
|
pm4.42 |
|- ( -. ph <-> ( ( -. ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
| 10 |
5
|
ex |
|- ( -. ph -> ( ps -> ta ) ) |
| 11 |
10
|
ancld |
|- ( -. ph -> ( ps -> ( ps /\ ta ) ) ) |
| 12 |
11
|
imp |
|- ( ( -. ph /\ ps ) -> ( ps /\ ta ) ) |
| 13 |
6
|
ex |
|- ( -. ph -> ( -. ps -> et ) ) |
| 14 |
13
|
ancld |
|- ( -. ph -> ( -. ps -> ( -. ps /\ et ) ) ) |
| 15 |
14
|
imp |
|- ( ( -. ph /\ -. ps ) -> ( -. ps /\ et ) ) |
| 16 |
12 15
|
orim12i |
|- ( ( ( -. ph /\ ps ) \/ ( -. ph /\ -. ps ) ) -> ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) |
| 17 |
9 16
|
sylbi |
|- ( -. ph -> ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) |
| 18 |
17
|
ancli |
|- ( -. ph -> ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) |
| 19 |
8 18
|
orim12i |
|- ( ( ph \/ -. ph ) -> ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) ) |
| 20 |
7 19
|
ax-mp |
|- ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) |
| 21 |
1 2 3
|
elim2if |
|- ( ch <-> ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) ) |
| 22 |
20 21
|
mpbir |
|- ch |