Metamath Proof Explorer


Theorem elim2ifim

Description: Elimination of two conditional operators for an implication. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses elim2if.1 ifφAifψBC=Aχθ
elim2if.2 ifφAifψBC=Bχτ
elim2if.3 ifφAifψBC=Cχη
elim2ifim.1 φθ
elim2ifim.2 ¬φψτ
elim2ifim.3 ¬φ¬ψη
Assertion elim2ifim χ

Proof

Step Hyp Ref Expression
1 elim2if.1 ifφAifψBC=Aχθ
2 elim2if.2 ifφAifψBC=Bχτ
3 elim2if.3 ifφAifψBC=Cχη
4 elim2ifim.1 φθ
5 elim2ifim.2 ¬φψτ
6 elim2ifim.3 ¬φ¬ψη
7 exmid φ¬φ
8 4 ancli φφθ
9 pm4.42 ¬φ¬φψ¬φ¬ψ
10 5 ex ¬φψτ
11 10 ancld ¬φψψτ
12 11 imp ¬φψψτ
13 6 ex ¬φ¬ψη
14 13 ancld ¬φ¬ψ¬ψη
15 14 imp ¬φ¬ψ¬ψη
16 12 15 orim12i ¬φψ¬φ¬ψψτ¬ψη
17 9 16 sylbi ¬φψτ¬ψη
18 17 ancli ¬φ¬φψτ¬ψη
19 8 18 orim12i φ¬φφθ¬φψτ¬ψη
20 7 19 ax-mp φθ¬φψτ¬ψη
21 1 2 3 elim2if χφθ¬φψτ¬ψη
22 20 21 mpbir χ