Description: Elimination of two conditional operators for an implication. (Contributed by Thierry Arnoux, 25-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elim2if.1 | |
|
elim2if.2 | |
||
elim2if.3 | |
||
elim2ifim.1 | |
||
elim2ifim.2 | |
||
elim2ifim.3 | |
||
Assertion | elim2ifim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elim2if.1 | |
|
2 | elim2if.2 | |
|
3 | elim2if.3 | |
|
4 | elim2ifim.1 | |
|
5 | elim2ifim.2 | |
|
6 | elim2ifim.3 | |
|
7 | exmid | |
|
8 | 4 | ancli | |
9 | pm4.42 | |
|
10 | 5 | ex | |
11 | 10 | ancld | |
12 | 11 | imp | |
13 | 6 | ex | |
14 | 13 | ancld | |
15 | 14 | imp | |
16 | 12 15 | orim12i | |
17 | 9 16 | sylbi | |
18 | 17 | ancli | |
19 | 8 18 | orim12i | |
20 | 7 19 | ax-mp | |
21 | 1 2 3 | elim2if | |
22 | 20 21 | mpbir | |