Step |
Hyp |
Ref |
Expression |
1 |
|
elim2if.1 |
⊢ ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐴 → ( 𝜒 ↔ 𝜃 ) ) |
2 |
|
elim2if.2 |
⊢ ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐵 → ( 𝜒 ↔ 𝜏 ) ) |
3 |
|
elim2if.3 |
⊢ ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐶 → ( 𝜒 ↔ 𝜂 ) ) |
4 |
|
elim2ifim.1 |
⊢ ( 𝜑 → 𝜃 ) |
5 |
|
elim2ifim.2 |
⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) → 𝜏 ) |
6 |
|
elim2ifim.3 |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜂 ) |
7 |
|
exmid |
⊢ ( 𝜑 ∨ ¬ 𝜑 ) |
8 |
4
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝜃 ) ) |
9 |
|
pm4.42 |
⊢ ( ¬ 𝜑 ↔ ( ( ¬ 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) |
10 |
5
|
ex |
⊢ ( ¬ 𝜑 → ( 𝜓 → 𝜏 ) ) |
11 |
10
|
ancld |
⊢ ( ¬ 𝜑 → ( 𝜓 → ( 𝜓 ∧ 𝜏 ) ) ) |
12 |
11
|
imp |
⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) → ( 𝜓 ∧ 𝜏 ) ) |
13 |
6
|
ex |
⊢ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜂 ) ) |
14 |
13
|
ancld |
⊢ ( ¬ 𝜑 → ( ¬ 𝜓 → ( ¬ 𝜓 ∧ 𝜂 ) ) ) |
15 |
14
|
imp |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → ( ¬ 𝜓 ∧ 𝜂 ) ) |
16 |
12 15
|
orim12i |
⊢ ( ( ( ¬ 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) |
17 |
9 16
|
sylbi |
⊢ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) |
18 |
17
|
ancli |
⊢ ( ¬ 𝜑 → ( ¬ 𝜑 ∧ ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) ) |
19 |
8 18
|
orim12i |
⊢ ( ( 𝜑 ∨ ¬ 𝜑 ) → ( ( 𝜑 ∧ 𝜃 ) ∨ ( ¬ 𝜑 ∧ ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) ) ) |
20 |
7 19
|
ax-mp |
⊢ ( ( 𝜑 ∧ 𝜃 ) ∨ ( ¬ 𝜑 ∧ ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) ) |
21 |
1 2 3
|
elim2if |
⊢ ( 𝜒 ↔ ( ( 𝜑 ∧ 𝜃 ) ∨ ( ¬ 𝜑 ∧ ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) ) ) |
22 |
20 21
|
mpbir |
⊢ 𝜒 |