Metamath Proof Explorer


Theorem pm4.42

Description: Theorem *4.42 of WhiteheadRussell p. 119. See also ifpid . (Contributed by Roy F. Longton, 21-Jun-2005)

Ref Expression
Assertion pm4.42 ( 𝜑 ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 dedlema ( 𝜓 → ( 𝜑 ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) ) )
2 dedlemb ( ¬ 𝜓 → ( 𝜑 ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) ) )
3 1 2 pm2.61i ( 𝜑 ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) )