Description: Hypothesis for weak deduction theorem to eliminate 0 < A . (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | elimgt0 | |- 0 < if ( 0 < A , A , 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |- ( A = if ( 0 < A , A , 1 ) -> ( 0 < A <-> 0 < if ( 0 < A , A , 1 ) ) ) |
|
2 | breq2 | |- ( 1 = if ( 0 < A , A , 1 ) -> ( 0 < 1 <-> 0 < if ( 0 < A , A , 1 ) ) ) |
|
3 | 0lt1 | |- 0 < 1 |
|
4 | 1 2 3 | elimhyp | |- 0 < if ( 0 < A , A , 1 ) |