Description: Hypothesis for weak deduction theorem to eliminate 0 < A . (Contributed by NM, 15-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elimgt0 | |- 0 < if ( 0 < A , A , 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( A = if ( 0 < A , A , 1 ) -> ( 0 < A <-> 0 < if ( 0 < A , A , 1 ) ) ) |
|
| 2 | breq2 | |- ( 1 = if ( 0 < A , A , 1 ) -> ( 0 < 1 <-> 0 < if ( 0 < A , A , 1 ) ) ) |
|
| 3 | 0lt1 | |- 0 < 1 |
|
| 4 | 1 2 3 | elimhyp | |- 0 < if ( 0 < A , A , 1 ) |