Description: Hypothesis for weak deduction theorem to eliminate 0 < A . (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | elimgt0 | ⊢ 0 < if ( 0 < 𝐴 , 𝐴 , 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝐴 = if ( 0 < 𝐴 , 𝐴 , 1 ) → ( 0 < 𝐴 ↔ 0 < if ( 0 < 𝐴 , 𝐴 , 1 ) ) ) | |
2 | breq2 | ⊢ ( 1 = if ( 0 < 𝐴 , 𝐴 , 1 ) → ( 0 < 1 ↔ 0 < if ( 0 < 𝐴 , 𝐴 , 1 ) ) ) | |
3 | 0lt1 | ⊢ 0 < 1 | |
4 | 1 2 3 | elimhyp | ⊢ 0 < if ( 0 < 𝐴 , 𝐴 , 1 ) |