Metamath Proof Explorer


Theorem elimgt0

Description: Hypothesis for weak deduction theorem to eliminate 0 < A . (Contributed by NM, 15-May-1999)

Ref Expression
Assertion elimgt0 0 < if ( 0 < 𝐴 , 𝐴 , 1 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝐴 = if ( 0 < 𝐴 , 𝐴 , 1 ) → ( 0 < 𝐴 ↔ 0 < if ( 0 < 𝐴 , 𝐴 , 1 ) ) )
2 breq2 ( 1 = if ( 0 < 𝐴 , 𝐴 , 1 ) → ( 0 < 1 ↔ 0 < if ( 0 < 𝐴 , 𝐴 , 1 ) ) )
3 0lt1 0 < 1
4 1 2 3 elimhyp 0 < if ( 0 < 𝐴 , 𝐴 , 1 )