Description: Hypothesis for weak deduction theorem to eliminate 0 <_ A . (Contributed by NM, 30-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | elimge0 | ⊢ 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝐴 = if ( 0 ≤ 𝐴 , 𝐴 , 0 ) → ( 0 ≤ 𝐴 ↔ 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ) | |
2 | breq2 | ⊢ ( 0 = if ( 0 ≤ 𝐴 , 𝐴 , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ) | |
3 | 0re | ⊢ 0 ∈ ℝ | |
4 | 3 | leidi | ⊢ 0 ≤ 0 |
5 | 1 2 4 | elimhyp | ⊢ 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) |