Metamath Proof Explorer


Theorem elimge0

Description: Hypothesis for weak deduction theorem to eliminate 0 <_ A . (Contributed by NM, 30-Jul-1999)

Ref Expression
Assertion elimge0 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝐴 = if ( 0 ≤ 𝐴 , 𝐴 , 0 ) → ( 0 ≤ 𝐴 ↔ 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) )
2 breq2 ( 0 = if ( 0 ≤ 𝐴 , 𝐴 , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) )
3 0re 0 ∈ ℝ
4 3 leidi 0 ≤ 0
5 1 2 4 elimhyp 0 ≤ if ( 0 ≤ 𝐴 , 𝐴 , 0 )