Metamath Proof Explorer


Theorem elimge0

Description: Hypothesis for weak deduction theorem to eliminate 0 <_ A . (Contributed by NM, 30-Jul-1999)

Ref Expression
Assertion elimge0 0if0AA0

Proof

Step Hyp Ref Expression
1 breq2 A=if0AA00A0if0AA0
2 breq2 0=if0AA0000if0AA0
3 0re 0
4 3 leidi 00
5 1 2 4 elimhyp 0if0AA0