Metamath Proof Explorer


Theorem elimge0

Description: Hypothesis for weak deduction theorem to eliminate 0 <_ A . (Contributed by NM, 30-Jul-1999)

Ref Expression
Assertion elimge0 0 if 0 A A 0

Proof

Step Hyp Ref Expression
1 breq2 A = if 0 A A 0 0 A 0 if 0 A A 0
2 breq2 0 = if 0 A A 0 0 0 0 if 0 A A 0
3 0re 0
4 3 leidi 0 0
5 1 2 4 elimhyp 0 if 0 A A 0