Description: Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Put in closed form and shorten proof. (Revised by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elinisegg | |- ( ( B e. V /\ C e. W ) -> ( C e. ( `' A " { B } ) <-> C A B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng1 | |- ( ( B e. V /\ C e. W ) -> ( C e. ( `' A " { B } ) <-> B `' A C ) ) |
|
| 2 | brcnvg | |- ( ( B e. V /\ C e. W ) -> ( B `' A C <-> C A B ) ) |
|
| 3 | 1 2 | bitrd | |- ( ( B e. V /\ C e. W ) -> ( C e. ( `' A " { B } ) <-> C A B ) ) |