Step |
Hyp |
Ref |
Expression |
1 |
|
eliooshift.a |
|- ( ph -> A e. RR ) |
2 |
|
eliooshift.b |
|- ( ph -> B e. RR ) |
3 |
|
eliooshift.c |
|- ( ph -> C e. RR ) |
4 |
|
eliooshift.d |
|- ( ph -> D e. RR ) |
5 |
1 4
|
readdcld |
|- ( ph -> ( A + D ) e. RR ) |
6 |
5 1
|
2thd |
|- ( ph -> ( ( A + D ) e. RR <-> A e. RR ) ) |
7 |
2 1 4
|
ltadd1d |
|- ( ph -> ( B < A <-> ( B + D ) < ( A + D ) ) ) |
8 |
7
|
bicomd |
|- ( ph -> ( ( B + D ) < ( A + D ) <-> B < A ) ) |
9 |
1 3 4
|
ltadd1d |
|- ( ph -> ( A < C <-> ( A + D ) < ( C + D ) ) ) |
10 |
9
|
bicomd |
|- ( ph -> ( ( A + D ) < ( C + D ) <-> A < C ) ) |
11 |
6 8 10
|
3anbi123d |
|- ( ph -> ( ( ( A + D ) e. RR /\ ( B + D ) < ( A + D ) /\ ( A + D ) < ( C + D ) ) <-> ( A e. RR /\ B < A /\ A < C ) ) ) |
12 |
2 4
|
readdcld |
|- ( ph -> ( B + D ) e. RR ) |
13 |
12
|
rexrd |
|- ( ph -> ( B + D ) e. RR* ) |
14 |
3 4
|
readdcld |
|- ( ph -> ( C + D ) e. RR ) |
15 |
14
|
rexrd |
|- ( ph -> ( C + D ) e. RR* ) |
16 |
|
elioo2 |
|- ( ( ( B + D ) e. RR* /\ ( C + D ) e. RR* ) -> ( ( A + D ) e. ( ( B + D ) (,) ( C + D ) ) <-> ( ( A + D ) e. RR /\ ( B + D ) < ( A + D ) /\ ( A + D ) < ( C + D ) ) ) ) |
17 |
13 15 16
|
syl2anc |
|- ( ph -> ( ( A + D ) e. ( ( B + D ) (,) ( C + D ) ) <-> ( ( A + D ) e. RR /\ ( B + D ) < ( A + D ) /\ ( A + D ) < ( C + D ) ) ) ) |
18 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
19 |
3
|
rexrd |
|- ( ph -> C e. RR* ) |
20 |
|
elioo2 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( A e. ( B (,) C ) <-> ( A e. RR /\ B < A /\ A < C ) ) ) |
21 |
18 19 20
|
syl2anc |
|- ( ph -> ( A e. ( B (,) C ) <-> ( A e. RR /\ B < A /\ A < C ) ) ) |
22 |
11 17 21
|
3bitr4rd |
|- ( ph -> ( A e. ( B (,) C ) <-> ( A + D ) e. ( ( B + D ) (,) ( C + D ) ) ) ) |