Metamath Proof Explorer


Theorem eliunov2uz

Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set N is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020)

Ref Expression
Hypothesis eliunov2uz.def
|- C = ( r e. _V |-> U_ n e. N ( r .^ n ) )
Assertion eliunov2uz
|- ( ( R e. U /\ N = ( ZZ>= ` M ) ) -> ( X e. ( C ` R ) <-> E. n e. N X e. ( R .^ n ) ) )

Proof

Step Hyp Ref Expression
1 eliunov2uz.def
 |-  C = ( r e. _V |-> U_ n e. N ( r .^ n ) )
2 simpr
 |-  ( ( R e. U /\ N = ( ZZ>= ` M ) ) -> N = ( ZZ>= ` M ) )
3 fvex
 |-  ( ZZ>= ` M ) e. _V
4 2 3 eqeltrdi
 |-  ( ( R e. U /\ N = ( ZZ>= ` M ) ) -> N e. _V )
5 1 eliunov2
 |-  ( ( R e. U /\ N e. _V ) -> ( X e. ( C ` R ) <-> E. n e. N X e. ( R .^ n ) ) )
6 4 5 syldan
 |-  ( ( R e. U /\ N = ( ZZ>= ` M ) ) -> ( X e. ( C ` R ) <-> E. n e. N X e. ( R .^ n ) ) )