Metamath Proof Explorer


Theorem eliunov2uz

Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set N is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020)

Ref Expression
Hypothesis eliunov2uz.def 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟 𝑛 ) )
Assertion eliunov2uz ( ( 𝑅𝑈𝑁 = ( ℤ𝑀 ) ) → ( 𝑋 ∈ ( 𝐶𝑅 ) ↔ ∃ 𝑛𝑁 𝑋 ∈ ( 𝑅 𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 eliunov2uz.def 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟 𝑛 ) )
2 simpr ( ( 𝑅𝑈𝑁 = ( ℤ𝑀 ) ) → 𝑁 = ( ℤ𝑀 ) )
3 fvex ( ℤ𝑀 ) ∈ V
4 2 3 eqeltrdi ( ( 𝑅𝑈𝑁 = ( ℤ𝑀 ) ) → 𝑁 ∈ V )
5 1 eliunov2 ( ( 𝑅𝑈𝑁 ∈ V ) → ( 𝑋 ∈ ( 𝐶𝑅 ) ↔ ∃ 𝑛𝑁 𝑋 ∈ ( 𝑅 𝑛 ) ) )
6 4 5 syldan ( ( 𝑅𝑈𝑁 = ( ℤ𝑀 ) ) → ( 𝑋 ∈ ( 𝐶𝑅 ) ↔ ∃ 𝑛𝑁 𝑋 ∈ ( 𝑅 𝑛 ) ) )