Metamath Proof Explorer


Theorem ov2ssiunov2

Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020)

Ref Expression
Hypothesis ov2ssiunov2.def
|- C = ( r e. _V |-> U_ n e. N ( r .^ n ) )
Assertion ov2ssiunov2
|- ( ( R e. U /\ N e. V /\ M e. N ) -> ( R .^ M ) C_ ( C ` R ) )

Proof

Step Hyp Ref Expression
1 ov2ssiunov2.def
 |-  C = ( r e. _V |-> U_ n e. N ( r .^ n ) )
2 simp3
 |-  ( ( R e. U /\ N e. V /\ M e. N ) -> M e. N )
3 simpr
 |-  ( ( ( R e. U /\ N e. V /\ M e. N ) /\ n = M ) -> n = M )
4 3 oveq2d
 |-  ( ( ( R e. U /\ N e. V /\ M e. N ) /\ n = M ) -> ( R .^ n ) = ( R .^ M ) )
5 4 eleq2d
 |-  ( ( ( R e. U /\ N e. V /\ M e. N ) /\ n = M ) -> ( x e. ( R .^ n ) <-> x e. ( R .^ M ) ) )
6 2 5 rspcedv
 |-  ( ( R e. U /\ N e. V /\ M e. N ) -> ( x e. ( R .^ M ) -> E. n e. N x e. ( R .^ n ) ) )
7 1 eliunov2
 |-  ( ( R e. U /\ N e. V ) -> ( x e. ( C ` R ) <-> E. n e. N x e. ( R .^ n ) ) )
8 7 biimprd
 |-  ( ( R e. U /\ N e. V ) -> ( E. n e. N x e. ( R .^ n ) -> x e. ( C ` R ) ) )
9 8 3adant3
 |-  ( ( R e. U /\ N e. V /\ M e. N ) -> ( E. n e. N x e. ( R .^ n ) -> x e. ( C ` R ) ) )
10 6 9 syld
 |-  ( ( R e. U /\ N e. V /\ M e. N ) -> ( x e. ( R .^ M ) -> x e. ( C ` R ) ) )
11 10 ssrdv
 |-  ( ( R e. U /\ N e. V /\ M e. N ) -> ( R .^ M ) C_ ( C ` R ) )