| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn0cn | 
							 |-  ( N e. NN0 -> N e. CC )  | 
						
						
							| 2 | 
							
								
							 | 
							nn0p1nn | 
							 |-  ( N e. NN0 -> ( N + 1 ) e. NN )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							jca | 
							 |-  ( N e. NN0 -> ( N e. CC /\ ( N + 1 ) e. NN ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. CC )  | 
						
						
							| 5 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 6 | 
							
								
							 | 
							pncan | 
							 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							sylancl | 
							 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) = N )  | 
						
						
							| 8 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( ( N + 1 ) e. NN -> ( ( N + 1 ) - 1 ) e. NN0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) e. NN0 )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqeltrrd | 
							 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. NN0 )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							impbii | 
							 |-  ( N e. NN0 <-> ( N e. CC /\ ( N + 1 ) e. NN ) )  |