| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orrvccel.1 |
|- ( ph -> P e. Prob ) |
| 2 |
|
orrvccel.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
| 3 |
|
orrvccel.4 |
|- ( ph -> A e. V ) |
| 4 |
1 2
|
rrvdm |
|- ( ph -> dom X = U. dom P ) |
| 5 |
4
|
eleq2d |
|- ( ph -> ( z e. dom X <-> z e. U. dom P ) ) |
| 6 |
5
|
biimprd |
|- ( ph -> ( z e. U. dom P -> z e. dom X ) ) |
| 7 |
6
|
imdistani |
|- ( ( ph /\ z e. U. dom P ) -> ( ph /\ z e. dom X ) ) |
| 8 |
1 2
|
rrvfn |
|- ( ph -> X Fn U. dom P ) |
| 9 |
|
fnfun |
|- ( X Fn U. dom P -> Fun X ) |
| 10 |
8 9
|
syl |
|- ( ph -> Fun X ) |
| 11 |
10 2 3
|
elorvc |
|- ( ( ph /\ z e. dom X ) -> ( z e. ( X oRVC R A ) <-> ( X ` z ) R A ) ) |
| 12 |
7 11
|
syl |
|- ( ( ph /\ z e. U. dom P ) -> ( z e. ( X oRVC R A ) <-> ( X ` z ) R A ) ) |