| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orrvccel.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | orrvccel.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orrvccel.4 |  |-  ( ph -> A e. V ) | 
						
							| 4 | 1 2 | rrvdm |  |-  ( ph -> dom X = U. dom P ) | 
						
							| 5 | 4 | eleq2d |  |-  ( ph -> ( z e. dom X <-> z e. U. dom P ) ) | 
						
							| 6 | 5 | biimprd |  |-  ( ph -> ( z e. U. dom P -> z e. dom X ) ) | 
						
							| 7 | 6 | imdistani |  |-  ( ( ph /\ z e. U. dom P ) -> ( ph /\ z e. dom X ) ) | 
						
							| 8 | 1 2 | rrvfn |  |-  ( ph -> X Fn U. dom P ) | 
						
							| 9 |  | fnfun |  |-  ( X Fn U. dom P -> Fun X ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> Fun X ) | 
						
							| 11 | 10 2 3 | elorvc |  |-  ( ( ph /\ z e. dom X ) -> ( z e. ( X oRVC R A ) <-> ( X ` z ) R A ) ) | 
						
							| 12 | 7 11 | syl |  |-  ( ( ph /\ z e. U. dom P ) -> ( z e. ( X oRVC R A ) <-> ( X ` z ) R A ) ) |