Metamath Proof Explorer


Theorem orrvcval4

Description: The value of the preimage mapping operator can be restricted to preimages of subsets of RR . (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orrvccel.1
|- ( ph -> P e. Prob )
orrvccel.2
|- ( ph -> X e. ( rRndVar ` P ) )
orrvccel.4
|- ( ph -> A e. V )
Assertion orrvcval4
|- ( ph -> ( X oRVC R A ) = ( `' X " { y e. RR | y R A } ) )

Proof

Step Hyp Ref Expression
1 orrvccel.1
 |-  ( ph -> P e. Prob )
2 orrvccel.2
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 orrvccel.4
 |-  ( ph -> A e. V )
4 domprobsiga
 |-  ( P e. Prob -> dom P e. U. ran sigAlgebra )
5 1 4 syl
 |-  ( ph -> dom P e. U. ran sigAlgebra )
6 retop
 |-  ( topGen ` ran (,) ) e. Top
7 6 a1i
 |-  ( ph -> ( topGen ` ran (,) ) e. Top )
8 1 rrvmbfm
 |-  ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) )
9 2 8 mpbid
 |-  ( ph -> X e. ( dom P MblFnM BrSiga ) )
10 df-brsiga
 |-  BrSiga = ( sigaGen ` ( topGen ` ran (,) ) )
11 10 oveq2i
 |-  ( dom P MblFnM BrSiga ) = ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) )
12 9 11 eleqtrdi
 |-  ( ph -> X e. ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) )
13 5 7 12 3 orvcval4
 |-  ( ph -> ( X oRVC R A ) = ( `' X " { y e. U. ( topGen ` ran (,) ) | y R A } ) )
14 uniretop
 |-  RR = U. ( topGen ` ran (,) )
15 rabeq
 |-  ( RR = U. ( topGen ` ran (,) ) -> { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } )
16 14 15 ax-mp
 |-  { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A }
17 16 imaeq2i
 |-  ( `' X " { y e. RR | y R A } ) = ( `' X " { y e. U. ( topGen ` ran (,) ) | y R A } )
18 13 17 eqtr4di
 |-  ( ph -> ( X oRVC R A ) = ( `' X " { y e. RR | y R A } ) )