Step |
Hyp |
Ref |
Expression |
1 |
|
orrvccel.1 |
|- ( ph -> P e. Prob ) |
2 |
|
orrvccel.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orrvccel.4 |
|- ( ph -> A e. V ) |
4 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
5 |
1 4
|
syl |
|- ( ph -> dom P e. U. ran sigAlgebra ) |
6 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
7 |
6
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
8 |
1
|
rrvmbfm |
|- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) |
9 |
2 8
|
mpbid |
|- ( ph -> X e. ( dom P MblFnM BrSiga ) ) |
10 |
|
df-brsiga |
|- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
11 |
10
|
oveq2i |
|- ( dom P MblFnM BrSiga ) = ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) |
12 |
9 11
|
eleqtrdi |
|- ( ph -> X e. ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) ) |
13 |
5 7 12 3
|
orvcval4 |
|- ( ph -> ( X oRVC R A ) = ( `' X " { y e. U. ( topGen ` ran (,) ) | y R A } ) ) |
14 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
15 |
|
rabeq |
|- ( RR = U. ( topGen ` ran (,) ) -> { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } ) |
16 |
14 15
|
ax-mp |
|- { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } |
17 |
16
|
imaeq2i |
|- ( `' X " { y e. RR | y R A } ) = ( `' X " { y e. U. ( topGen ` ran (,) ) | y R A } ) |
18 |
13 17
|
eqtr4di |
|- ( ph -> ( X oRVC R A ) = ( `' X " { y e. RR | y R A } ) ) |