Step |
Hyp |
Ref |
Expression |
1 |
|
orrvccel.1 |
|- ( ph -> P e. Prob ) |
2 |
|
orrvccel.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orrvccel.4 |
|- ( ph -> A e. V ) |
4 |
|
orrvcoel.5 |
|- ( ph -> { y e. RR | y R A } e. ( topGen ` ran (,) ) ) |
5 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
6 |
1 5
|
syl |
|- ( ph -> dom P e. U. ran sigAlgebra ) |
7 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
8 |
7
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
9 |
1
|
rrvmbfm |
|- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) |
10 |
2 9
|
mpbid |
|- ( ph -> X e. ( dom P MblFnM BrSiga ) ) |
11 |
|
df-brsiga |
|- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
12 |
11
|
oveq2i |
|- ( dom P MblFnM BrSiga ) = ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) |
13 |
10 12
|
eleqtrdi |
|- ( ph -> X e. ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) ) |
14 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
15 |
|
rabeq |
|- ( RR = U. ( topGen ` ran (,) ) -> { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } ) |
16 |
14 15
|
ax-mp |
|- { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } |
17 |
16 4
|
eqeltrrid |
|- ( ph -> { y e. U. ( topGen ` ran (,) ) | y R A } e. ( topGen ` ran (,) ) ) |
18 |
6 8 13 3 17
|
orvcoel |
|- ( ph -> ( X oRVC R A ) e. dom P ) |