| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orrvccel.1 |
|- ( ph -> P e. Prob ) |
| 2 |
|
orrvccel.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
| 3 |
|
orrvccel.4 |
|- ( ph -> A e. V ) |
| 4 |
|
orrvccel.5 |
|- ( ph -> { y e. RR | y R A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 5 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
| 6 |
1 5
|
syl |
|- ( ph -> dom P e. U. ran sigAlgebra ) |
| 7 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 8 |
7
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
| 9 |
1
|
rrvmbfm |
|- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) |
| 10 |
2 9
|
mpbid |
|- ( ph -> X e. ( dom P MblFnM BrSiga ) ) |
| 11 |
|
df-brsiga |
|- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
| 12 |
11
|
oveq2i |
|- ( dom P MblFnM BrSiga ) = ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) |
| 13 |
10 12
|
eleqtrdi |
|- ( ph -> X e. ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) ) |
| 14 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 15 |
|
rabeq |
|- ( RR = U. ( topGen ` ran (,) ) -> { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } ) |
| 16 |
14 15
|
ax-mp |
|- { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } |
| 17 |
16 4
|
eqeltrrid |
|- ( ph -> { y e. U. ( topGen ` ran (,) ) | y R A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 18 |
6 8 13 3 17
|
orvccel |
|- ( ph -> ( X oRVC R A ) e. dom P ) |