| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orrvccel.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | orrvccel.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orrvccel.4 |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | orrvccel.5 |  |-  ( ph -> { y e. RR | y R A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 5 |  | domprobsiga |  |-  ( P e. Prob -> dom P e. U. ran sigAlgebra ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> dom P e. U. ran sigAlgebra ) | 
						
							| 7 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( topGen ` ran (,) ) e. Top ) | 
						
							| 9 | 1 | rrvmbfm |  |-  ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) | 
						
							| 10 | 2 9 | mpbid |  |-  ( ph -> X e. ( dom P MblFnM BrSiga ) ) | 
						
							| 11 |  | df-brsiga |  |-  BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) | 
						
							| 12 | 11 | oveq2i |  |-  ( dom P MblFnM BrSiga ) = ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) | 
						
							| 13 | 10 12 | eleqtrdi |  |-  ( ph -> X e. ( dom P MblFnM ( sigaGen ` ( topGen ` ran (,) ) ) ) ) | 
						
							| 14 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 15 |  | rabeq |  |-  ( RR = U. ( topGen ` ran (,) ) -> { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } ) | 
						
							| 16 | 14 15 | ax-mp |  |-  { y e. RR | y R A } = { y e. U. ( topGen ` ran (,) ) | y R A } | 
						
							| 17 | 16 4 | eqeltrrid |  |-  ( ph -> { y e. U. ( topGen ` ran (,) ) | y R A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 18 | 6 8 13 3 17 | orvccel |  |-  ( ph -> ( X oRVC R A ) e. dom P ) |