Metamath Proof Explorer


Theorem orrvccel

Description: If the relation produces closed sets, preimage maps are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orrvccel.1 φPProb
orrvccel.2 φXRndVarP
orrvccel.4 φAV
orrvccel.5 φy|yRAClsdtopGenran.
Assertion orrvccel φXRRV/cAdomP

Proof

Step Hyp Ref Expression
1 orrvccel.1 φPProb
2 orrvccel.2 φXRndVarP
3 orrvccel.4 φAV
4 orrvccel.5 φy|yRAClsdtopGenran.
5 domprobsiga PProbdomPransigAlgebra
6 1 5 syl φdomPransigAlgebra
7 retop topGenran.Top
8 7 a1i φtopGenran.Top
9 1 rrvmbfm φXRndVarPXdomPMblFnμ𝔅
10 2 9 mpbid φXdomPMblFnμ𝔅
11 df-brsiga 𝔅=𝛔topGenran.
12 11 oveq2i domPMblFnμ𝔅=domPMblFnμ𝛔topGenran.
13 10 12 eleqtrdi φXdomPMblFnμ𝛔topGenran.
14 uniretop =topGenran.
15 rabeq =topGenran.y|yRA=ytopGenran.|yRA
16 14 15 ax-mp y|yRA=ytopGenran.|yRA
17 16 4 eqeltrrid φytopGenran.|yRAClsdtopGenran.
18 6 8 13 3 17 orvccel φXRRV/cAdomP