| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orrvccel.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
| 2 |
|
orrvccel.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
| 3 |
|
orrvccel.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
orrvccel.5 |
⊢ ( 𝜑 → { 𝑦 ∈ ℝ ∣ 𝑦 𝑅 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 5 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
| 7 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 9 |
1
|
rrvmbfm |
⊢ ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |
| 10 |
2 9
|
mpbid |
⊢ ( 𝜑 → 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
| 11 |
|
df-brsiga |
⊢ 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
| 12 |
11
|
oveq2i |
⊢ ( dom 𝑃 MblFnM 𝔅ℝ ) = ( dom 𝑃 MblFnM ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) |
| 13 |
10 12
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( dom 𝑃 MblFnM ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) ) |
| 14 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 15 |
|
rabeq |
⊢ ( ℝ = ∪ ( topGen ‘ ran (,) ) → { 𝑦 ∈ ℝ ∣ 𝑦 𝑅 𝐴 } = { 𝑦 ∈ ∪ ( topGen ‘ ran (,) ) ∣ 𝑦 𝑅 𝐴 } ) |
| 16 |
14 15
|
ax-mp |
⊢ { 𝑦 ∈ ℝ ∣ 𝑦 𝑅 𝐴 } = { 𝑦 ∈ ∪ ( topGen ‘ ran (,) ) ∣ 𝑦 𝑅 𝐴 } |
| 17 |
16 4
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑦 ∈ ∪ ( topGen ‘ ran (,) ) ∣ 𝑦 𝑅 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 18 |
6 8 13 3 17
|
orvccel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) ∈ dom 𝑃 ) |