| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvcgteel.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | orvcgteel.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orvcgteel.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 5 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | brcnvg | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝑥 ◡  ≤  𝐴  ↔  𝐴  ≤  𝑥 ) ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑥 ◡  ≤  𝐴  ↔  𝐴  ≤  𝑥 ) ) | 
						
							| 8 | 7 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ∧  𝑥 ◡  ≤  𝐴 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 ) ) ) | 
						
							| 9 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 10 | 9 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 11 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 12 |  | ltpnf | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  <  +∞ ) | 
						
							| 13 | 12 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 ) )  →  𝑥  <  +∞ ) | 
						
							| 14 | 11 13 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 ) )  →  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 15 | 10 14 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 ) )  →  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 17 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 18 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 19 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) )  →  𝑥  <  +∞ ) | 
						
							| 20 |  | xrre3 | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ∈  ℝ )  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 21 | 16 17 18 19 20 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 22 | 21 18 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 ) ) | 
						
							| 23 | 15 22 | impbida | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥 )  ↔  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) ) ) | 
						
							| 24 | 8 23 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ∧  𝑥 ◡  ≤  𝐴 )  ↔  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) ) ) ) | 
						
							| 25 | 24 | rabbidva2 | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥 ◡  ≤  𝐴 }  =  { 𝑥  ∈  ℝ*  ∣  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) } ) | 
						
							| 26 | 3 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 27 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 28 |  | icoval | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( 𝐴 [,) +∞ )  =  { 𝑥  ∈  ℝ*  ∣  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) } ) | 
						
							| 29 | 26 27 28 | sylancl | ⊢ ( 𝜑  →  ( 𝐴 [,) +∞ )  =  { 𝑥  ∈  ℝ*  ∣  ( 𝐴  ≤  𝑥  ∧  𝑥  <  +∞ ) } ) | 
						
							| 30 | 25 29 | eqtr4d | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥 ◡  ≤  𝐴 }  =  ( 𝐴 [,) +∞ ) ) | 
						
							| 31 |  | icopnfcld | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 [,) +∞ )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 32 | 3 31 | syl | ⊢ ( 𝜑  →  ( 𝐴 [,) +∞ )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 33 | 30 32 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥 ◡  ≤  𝐴 }  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 34 | 1 2 3 33 | orrvccel | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 ◡  ≤  𝐴 )  ∈  dom  𝑃 ) |