| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orvcgteel.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
| 2 |
|
orvcgteel.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
| 3 |
|
orvcgteel.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 6 |
|
brcnvg |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥 ) ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥 ) ) |
| 8 |
7
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 𝑥 ◡ ≤ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) ) |
| 9 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 10 |
9
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
| 11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → 𝐴 ≤ 𝑥 ) |
| 12 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
| 13 |
12
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → 𝑥 < +∞ ) |
| 14 |
11 13
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) |
| 15 |
10 14
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝑥 ∈ ℝ* ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝐴 ∈ ℝ ) |
| 18 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝐴 ≤ 𝑥 ) |
| 19 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝑥 < +∞ ) |
| 20 |
|
xrre3 |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) → 𝑥 ∈ ℝ ) |
| 21 |
16 17 18 19 20
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝑥 ∈ ℝ ) |
| 22 |
21 18
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) |
| 23 |
15 22
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) ) |
| 24 |
8 23
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 𝑥 ◡ ≤ 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) ) |
| 25 |
24
|
rabbidva2 |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ◡ ≤ 𝐴 } = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) } ) |
| 26 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 27 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 28 |
|
icoval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 [,) +∞ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) } ) |
| 29 |
26 27 28
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 [,) +∞ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) } ) |
| 30 |
25 29
|
eqtr4d |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ◡ ≤ 𝐴 } = ( 𝐴 [,) +∞ ) ) |
| 31 |
|
icopnfcld |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 32 |
3 31
|
syl |
⊢ ( 𝜑 → ( 𝐴 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 33 |
30 32
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ◡ ≤ 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 34 |
1 2 3 33
|
orrvccel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ◡ ≤ 𝐴 ) ∈ dom 𝑃 ) |