Step |
Hyp |
Ref |
Expression |
1 |
|
orvcgteel.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
orvcgteel.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
orvcgteel.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
6 |
|
brcnvg |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥 ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥 ) ) |
8 |
7
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 𝑥 ◡ ≤ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) ) |
9 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
10 |
9
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → 𝐴 ≤ 𝑥 ) |
12 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
13 |
12
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → 𝑥 < +∞ ) |
14 |
11 13
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) |
15 |
10 14
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝑥 ∈ ℝ* ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝐴 ∈ ℝ ) |
18 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝐴 ≤ 𝑥 ) |
19 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝑥 < +∞ ) |
20 |
|
xrre3 |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) → 𝑥 ∈ ℝ ) |
21 |
16 17 18 19 20
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → 𝑥 ∈ ℝ ) |
22 |
21 18
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) |
23 |
15 22
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) ) |
24 |
8 23
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 𝑥 ◡ ≤ 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) ) |
25 |
24
|
rabbidva2 |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ◡ ≤ 𝐴 } = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) } ) |
26 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
27 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
28 |
|
icoval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 [,) +∞ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) } ) |
29 |
26 27 28
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 [,) +∞ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < +∞ ) } ) |
30 |
25 29
|
eqtr4d |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ◡ ≤ 𝐴 } = ( 𝐴 [,) +∞ ) ) |
31 |
|
icopnfcld |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
32 |
3 31
|
syl |
⊢ ( 𝜑 → ( 𝐴 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
33 |
30 32
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ◡ ≤ 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
34 |
1 2 3 33
|
orrvccel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ◡ ≤ 𝐴 ) ∈ dom 𝑃 ) |