| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvcgteel.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | orvcgteel.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orvcgteel.3 |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | simpr |  |-  ( ( ph /\ x e. RR ) -> x e. RR ) | 
						
							| 5 | 3 | adantr |  |-  ( ( ph /\ x e. RR ) -> A e. RR ) | 
						
							| 6 |  | brcnvg |  |-  ( ( x e. RR /\ A e. RR ) -> ( x `' <_ A <-> A <_ x ) ) | 
						
							| 7 | 4 5 6 | syl2anc |  |-  ( ( ph /\ x e. RR ) -> ( x `' <_ A <-> A <_ x ) ) | 
						
							| 8 | 7 | pm5.32da |  |-  ( ph -> ( ( x e. RR /\ x `' <_ A ) <-> ( x e. RR /\ A <_ x ) ) ) | 
						
							| 9 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 10 | 9 | ad2antrl |  |-  ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> x e. RR* ) | 
						
							| 11 |  | simprr |  |-  ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> A <_ x ) | 
						
							| 12 |  | ltpnf |  |-  ( x e. RR -> x < +oo ) | 
						
							| 13 | 12 | ad2antrl |  |-  ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> x < +oo ) | 
						
							| 14 | 11 13 | jca |  |-  ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> ( A <_ x /\ x < +oo ) ) | 
						
							| 15 | 10 14 | jca |  |-  ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) | 
						
							| 16 |  | simprl |  |-  ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> x e. RR* ) | 
						
							| 17 | 3 | adantr |  |-  ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> A e. RR ) | 
						
							| 18 |  | simprrl |  |-  ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> A <_ x ) | 
						
							| 19 |  | simprrr |  |-  ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> x < +oo ) | 
						
							| 20 |  | xrre3 |  |-  ( ( ( x e. RR* /\ A e. RR ) /\ ( A <_ x /\ x < +oo ) ) -> x e. RR ) | 
						
							| 21 | 16 17 18 19 20 | syl22anc |  |-  ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> x e. RR ) | 
						
							| 22 | 21 18 | jca |  |-  ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> ( x e. RR /\ A <_ x ) ) | 
						
							| 23 | 15 22 | impbida |  |-  ( ph -> ( ( x e. RR /\ A <_ x ) <-> ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) ) | 
						
							| 24 | 8 23 | bitrd |  |-  ( ph -> ( ( x e. RR /\ x `' <_ A ) <-> ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) ) | 
						
							| 25 | 24 | rabbidva2 |  |-  ( ph -> { x e. RR | x `' <_ A } = { x e. RR* | ( A <_ x /\ x < +oo ) } ) | 
						
							| 26 | 3 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 27 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 28 |  | icoval |  |-  ( ( A e. RR* /\ +oo e. RR* ) -> ( A [,) +oo ) = { x e. RR* | ( A <_ x /\ x < +oo ) } ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ph -> ( A [,) +oo ) = { x e. RR* | ( A <_ x /\ x < +oo ) } ) | 
						
							| 30 | 25 29 | eqtr4d |  |-  ( ph -> { x e. RR | x `' <_ A } = ( A [,) +oo ) ) | 
						
							| 31 |  | icopnfcld |  |-  ( A e. RR -> ( A [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 32 | 3 31 | syl |  |-  ( ph -> ( A [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 33 | 30 32 | eqeltrd |  |-  ( ph -> { x e. RR | x `' <_ A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 34 | 1 2 3 33 | orrvccel |  |-  ( ph -> ( X oRVC `' <_ A ) e. dom P ) |