Step |
Hyp |
Ref |
Expression |
1 |
|
orvcgteel.1 |
|- ( ph -> P e. Prob ) |
2 |
|
orvcgteel.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orvcgteel.3 |
|- ( ph -> A e. RR ) |
4 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
5 |
3
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. RR ) |
6 |
|
brcnvg |
|- ( ( x e. RR /\ A e. RR ) -> ( x `' <_ A <-> A <_ x ) ) |
7 |
4 5 6
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( x `' <_ A <-> A <_ x ) ) |
8 |
7
|
pm5.32da |
|- ( ph -> ( ( x e. RR /\ x `' <_ A ) <-> ( x e. RR /\ A <_ x ) ) ) |
9 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
10 |
9
|
ad2antrl |
|- ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> x e. RR* ) |
11 |
|
simprr |
|- ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> A <_ x ) |
12 |
|
ltpnf |
|- ( x e. RR -> x < +oo ) |
13 |
12
|
ad2antrl |
|- ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> x < +oo ) |
14 |
11 13
|
jca |
|- ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> ( A <_ x /\ x < +oo ) ) |
15 |
10 14
|
jca |
|- ( ( ph /\ ( x e. RR /\ A <_ x ) ) -> ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) |
16 |
|
simprl |
|- ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> x e. RR* ) |
17 |
3
|
adantr |
|- ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> A e. RR ) |
18 |
|
simprrl |
|- ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> A <_ x ) |
19 |
|
simprrr |
|- ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> x < +oo ) |
20 |
|
xrre3 |
|- ( ( ( x e. RR* /\ A e. RR ) /\ ( A <_ x /\ x < +oo ) ) -> x e. RR ) |
21 |
16 17 18 19 20
|
syl22anc |
|- ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> x e. RR ) |
22 |
21 18
|
jca |
|- ( ( ph /\ ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) -> ( x e. RR /\ A <_ x ) ) |
23 |
15 22
|
impbida |
|- ( ph -> ( ( x e. RR /\ A <_ x ) <-> ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) ) |
24 |
8 23
|
bitrd |
|- ( ph -> ( ( x e. RR /\ x `' <_ A ) <-> ( x e. RR* /\ ( A <_ x /\ x < +oo ) ) ) ) |
25 |
24
|
rabbidva2 |
|- ( ph -> { x e. RR | x `' <_ A } = { x e. RR* | ( A <_ x /\ x < +oo ) } ) |
26 |
3
|
rexrd |
|- ( ph -> A e. RR* ) |
27 |
|
pnfxr |
|- +oo e. RR* |
28 |
|
icoval |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( A [,) +oo ) = { x e. RR* | ( A <_ x /\ x < +oo ) } ) |
29 |
26 27 28
|
sylancl |
|- ( ph -> ( A [,) +oo ) = { x e. RR* | ( A <_ x /\ x < +oo ) } ) |
30 |
25 29
|
eqtr4d |
|- ( ph -> { x e. RR | x `' <_ A } = ( A [,) +oo ) ) |
31 |
|
icopnfcld |
|- ( A e. RR -> ( A [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
32 |
3 31
|
syl |
|- ( ph -> ( A [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
33 |
30 32
|
eqeltrd |
|- ( ph -> { x e. RR | x `' <_ A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
34 |
1 2 3 33
|
orrvccel |
|- ( ph -> ( X oRVC `' <_ A ) e. dom P ) |