| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvccel.1 | ⊢ ( 𝜑  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 2 |  | orvccel.2 | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 3 |  | orvccel.3 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑆 MblFnM ( sigaGen ‘ 𝐽 ) ) ) | 
						
							| 4 |  | orvccel.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | orvccel.5 | ⊢ ( 𝜑  →  { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 6 | 1 2 3 4 | orvcval4 | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  =  ( ◡ 𝑋  “  { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 } ) ) | 
						
							| 7 | 2 | sgsiga | ⊢ ( 𝜑  →  ( sigaGen ‘ 𝐽 )  ∈  ∪  ran  sigAlgebra ) | 
						
							| 8 |  | cldssbrsiga | ⊢ ( 𝐽  ∈  Top  →  ( Clsd ‘ 𝐽 )  ⊆  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ( Clsd ‘ 𝐽 )  ⊆  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 10 | 9 5 | sseldd | ⊢ ( 𝜑  →  { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 }  ∈  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 11 | 1 7 3 10 | mbfmcnvima | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 } )  ∈  𝑆 ) | 
						
							| 12 | 6 11 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  ∈  𝑆 ) |