| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orrvccel.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | orrvccel.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orrvccel.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 | 1 2 | rrvdm | ⊢ ( 𝜑  →  dom  𝑋  =  ∪  dom  𝑃 ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( 𝜑  →  ( 𝑧  ∈  dom  𝑋  ↔  𝑧  ∈  ∪  dom  𝑃 ) ) | 
						
							| 6 | 5 | biimprd | ⊢ ( 𝜑  →  ( 𝑧  ∈  ∪  dom  𝑃  →  𝑧  ∈  dom  𝑋 ) ) | 
						
							| 7 | 6 | imdistani | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ∪  dom  𝑃 )  →  ( 𝜑  ∧  𝑧  ∈  dom  𝑋 ) ) | 
						
							| 8 | 1 2 | rrvfn | ⊢ ( 𝜑  →  𝑋  Fn  ∪  dom  𝑃 ) | 
						
							| 9 |  | fnfun | ⊢ ( 𝑋  Fn  ∪  dom  𝑃  →  Fun  𝑋 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  Fun  𝑋 ) | 
						
							| 11 | 10 2 3 | elorvc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  dom  𝑋 )  →  ( 𝑧  ∈  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  ↔  ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) | 
						
							| 12 | 7 11 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ∪  dom  𝑃 )  →  ( 𝑧  ∈  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  ↔  ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) |