| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orrvccel.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | orrvccel.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orrvccel.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | orrvcoel.5 | ⊢ ( 𝜑  →  { 𝑦  ∈  ℝ  ∣  𝑦 𝑅 𝐴 }  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 5 |  | domprobsiga | ⊢ ( 𝑃  ∈  Prob  →  dom  𝑃  ∈  ∪  ran  sigAlgebra ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  dom  𝑃  ∈  ∪  ran  sigAlgebra ) | 
						
							| 7 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( topGen ‘ ran  (,) )  ∈  Top ) | 
						
							| 9 | 1 | rrvmbfm | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( rRndVar ‘ 𝑃 )  ↔  𝑋  ∈  ( dom  𝑃 MblFnM 𝔅ℝ ) ) ) | 
						
							| 10 | 2 9 | mpbid | ⊢ ( 𝜑  →  𝑋  ∈  ( dom  𝑃 MblFnM 𝔅ℝ ) ) | 
						
							| 11 |  | df-brsiga | ⊢ 𝔅ℝ  =  ( sigaGen ‘ ( topGen ‘ ran  (,) ) ) | 
						
							| 12 | 11 | oveq2i | ⊢ ( dom  𝑃 MblFnM 𝔅ℝ )  =  ( dom  𝑃 MblFnM ( sigaGen ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 13 | 10 12 | eleqtrdi | ⊢ ( 𝜑  →  𝑋  ∈  ( dom  𝑃 MblFnM ( sigaGen ‘ ( topGen ‘ ran  (,) ) ) ) ) | 
						
							| 14 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 15 |  | rabeq | ⊢ ( ℝ  =  ∪  ( topGen ‘ ran  (,) )  →  { 𝑦  ∈  ℝ  ∣  𝑦 𝑅 𝐴 }  =  { 𝑦  ∈  ∪  ( topGen ‘ ran  (,) )  ∣  𝑦 𝑅 𝐴 } ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ { 𝑦  ∈  ℝ  ∣  𝑦 𝑅 𝐴 }  =  { 𝑦  ∈  ∪  ( topGen ‘ ran  (,) )  ∣  𝑦 𝑅 𝐴 } | 
						
							| 17 | 16 4 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑦  ∈  ∪  ( topGen ‘ ran  (,) )  ∣  𝑦 𝑅 𝐴 }  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 18 | 6 8 13 3 17 | orvcoel | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  ∈  dom  𝑃 ) |