Metamath Proof Explorer


Theorem orrvcoel

Description: If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orrvccel.1 φ P Prob
orrvccel.2 φ X RndVar P
orrvccel.4 φ A V
orrvcoel.5 φ y | y R A topGen ran .
Assertion orrvcoel φ X R RV/c A dom P

Proof

Step Hyp Ref Expression
1 orrvccel.1 φ P Prob
2 orrvccel.2 φ X RndVar P
3 orrvccel.4 φ A V
4 orrvcoel.5 φ y | y R A topGen ran .
5 domprobsiga P Prob dom P ran sigAlgebra
6 1 5 syl φ dom P ran sigAlgebra
7 retop topGen ran . Top
8 7 a1i φ topGen ran . Top
9 1 rrvmbfm φ X RndVar P X dom P MblFn μ 𝔅
10 2 9 mpbid φ X dom P MblFn μ 𝔅
11 df-brsiga 𝔅 = 𝛔 topGen ran .
12 11 oveq2i dom P MblFn μ 𝔅 = dom P MblFn μ 𝛔 topGen ran .
13 10 12 eleqtrdi φ X dom P MblFn μ 𝛔 topGen ran .
14 uniretop = topGen ran .
15 rabeq = topGen ran . y | y R A = y topGen ran . | y R A
16 14 15 ax-mp y | y R A = y topGen ran . | y R A
17 16 4 eqeltrrid φ y topGen ran . | y R A topGen ran .
18 6 8 13 3 17 orvcoel φ X R RV/c A dom P